Mechanical properties of 3D printed polylactic acid elements: Experimental and numerical insights

被引:14
|
作者
Monaldo, Elisabetta [1 ]
Ricci, Maurizio [1 ]
Marfia, Sonia [1 ]
机构
[1] RomaTre Univ, Dept Engn, Rome, Italy
关键词
Material extrusion; Experimental test; Multiscale; Homogenization; Transformation Field Analysis (TFA); MODEL; STRENGTH; BEHAVIOR; PARTS;
D O I
10.1016/j.mechmat.2022.104551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical behaviour of polylactic acid (PLA) samples printed via material extrusion is experimentally and numerically addressed. An experimental program comprising tensile and three-point bending tests is carried out. Some filament printing orientations and different values of flow rate percentage are considered and their influence on the mechanical performance is investigated. From a numerical point of view, a new two-level model for the multiscale analysis is considered. The macroscopic structural behaviour of the 3D printed component is described with a laminate finite element model based on the first-order shear deformation theory. Each layer of the laminate is described with an elasto-plastic constitutive law and the geometrical and mechanical properties are derived from the experimental results. The micromechanical analysis is conducted only when inelastic strain occurs performing a non-linear analytical homogenization technique based on the Transformation Field Analysis. The obtained numerical results are compared with the experimental results highlighting the effectiveness of the proposed modelling approach.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] Numerical and Experimental Investigations of Thermal Conductivity of 3D Printed Polylactic Acid
    Panaite, Carmen Ema
    Mihalache, Andrei Marius
    Slatineanu, Laurentiu
    Popescu, Aristotel
    Nagit, Gheorghe
    Hrituc, Adelina
    Dodun, Oana
    MACROMOLECULAR SYMPOSIA, 2022, 404 (01)
  • [2] Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose
    Ambone, Tushar
    Torris, Arun
    Shanmuganathan, Kadhiravan
    POLYMER ENGINEERING AND SCIENCE, 2020, 60 (08): : 1842 - 1855
  • [3] Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid
    Anderson, Isabelle
    3D PRINTING AND ADDITIVE MANUFACTURING, 2017, 4 (02) : 110 - 115
  • [4] Dielectric Properties of 3D Printed Polylactic Acid
    Dichtl, Claudius
    Sippel, Pit
    Krohns, Stephan
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 2017
  • [5] Measurement of the mechanical and dynamic properties of 3D printed polylactic acid reinforced with graphene
    Mansour, M.
    Tsongas, K.
    Tzetzis, D.
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2019, 58 (11): : 1234 - 1244
  • [6] Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts
    Gupta, Pulkin
    Kumari, Sudha
    Gupta, Abhishek
    Sinha, Ankit Kumar
    Jindal, Prashant
    MATERIALS TESTING, 2021, 63 (01) : 73 - 78
  • [7] Orientation-Dependent Mechanical Behavior of 3D Printed Polylactic Acid Parts: An Experimental-Numerical Study
    Vanaei, Saeedeh
    Rastak, Mohammadali
    El Magri, Anouar
    Vanaei, Hamid Reza
    Raissi, Kaddour
    Tcharkhtchi, Abbas
    MACHINES, 2023, 11 (12)
  • [8] Experimental and numerical study of orthotropic behavior of 3D printed polylactic acid by material extrusion
    Luis Sosa-Vivas
    Jhon Gonzalez-Delgado
    Gabriel Torrente-Prato
    Progress in Additive Manufacturing, 2023, 8 : 947 - 959
  • [9] Experimental and numerical study of orthotropic behavior of 3D printed polylactic acid by material extrusion
    Sosa-Vivas, Luis
    Gonzalez-Delgado, Jhon
    Torrente-Prato, Gabriel
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (05) : 947 - 959
  • [10] The microstructure and mechanical properties of 3D printed carbon nanotube-polylactic acid composites
    Patanwala, Huseini S.
    Hong, Danting
    Vora, Sahil R.
    Bognet, Brice
    Ma, Anson W. K.
    POLYMER COMPOSITES, 2018, 39 : E1060 - E1071