Metric spaces are universal for bi-interpretation with metric structures

被引:1
|
作者
Hanson, James [1 ]
机构
[1] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
关键词
Metric structures; Continuous logic; Bi-interpretation; Computable structure theory; CONTINUOUS 1ST-ORDER LOGIC;
D O I
10.1016/j.apal.2022.103204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of metric structures introduced by Ben Yaacov, Berenstein, Henson, and Usvyatsov [3], we exhibit an explicit encoding of metric structures in countable signatures as pure metric spaces in the empty signature, showing that such structures are universal for bi-interpretation among metric structures with positive diameter. This is analogous to the classical encoding of arbitrary discrete structures in finite signatures as graphs, but is stronger in certain ways and weaker in others. There are also certain fine grained topological concerns with no analog in the discrete setting.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Random and universal metric spaces
    Vershik, AM
    DYNAMICS AND RANDOMNESS II, 2004, 10 : 199 - 228
  • [2] INITIAL AND UNIVERSAL METRIC SPACES
    HOLSZTYNSKI, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) : 306 - 310
  • [3] MINIMAL UNIVERSAL METRIC SPACES
    Bilet, Victoriia
    Dovgoshey, Oleksiy
    Kucukaslan, Mehmet
    Petrov, Evgenii
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 1019 - 1064
  • [4] Universal approximation on metric spaces
    Jung, Woochul
    Rojas, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [5] UNIVERSAL SPACES AND UNIVERSAL BASES IN METRIC LINEAR-SPACES
    KALTON, NJ
    STUDIA MATHEMATICA, 1977, 61 (02) : 161 - 191
  • [6] Universal metric spaces and factorization theorems
    Husek, Miroslav
    Watson, Stephen
    TOPOLOGY AND ITS APPLICATIONS, 1996, 74 (1-3) : 259 - 263
  • [7] Universal metric spaces and extension dimension
    Chigogidze, A
    Valov, V
    TOPOLOGY AND ITS APPLICATIONS, 2001, 113 (1-3) : 23 - 27
  • [8] UNIVERSAL BAYES CONSISTENCY IN METRIC SPACES
    Hanneke, Steve
    Kontorovich, Aryeh
    Sabato, Sivan
    Weiss, Roi
    2020 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2020,
  • [9] UNIVERSAL BAYES CONSISTENCY IN METRIC SPACES
    Hanneke, Steve
    Kontorovich, Aryeh
    Sabato, Sivan
    Weiss, Roi
    ANNALS OF STATISTICS, 2021, 49 (04): : 2129 - 2150
  • [10] Corona metric spaces: Basic properties, universal lines, and the metric dimension
    Alberto Rodriguez-Velazquez, Juan
    AIMS MATHEMATICS, 2022, 7 (08): : 13763 - 13776