Clustering people with multiple sclerosis based on machine learning techniques applied to the biomechanical and clinical assessment of the disease main physical symptoms

被引:0
|
作者
Barbado, David [1 ,2 ]
Alcantara-Solis, Alberto [1 ]
Carpena, Carmen [1 ,2 ]
Valero-Conesa, Gregori [1 ]
Miralles-Borras, Aaron [1 ]
Rios-Calonge, Javier De Los [1 ]
Prat-Luri, Amaya [1 ]
Caballero, Carla [1 ]
Perez-Sempere, Angel [2 ,3 ]
Vera-Garcia, Francisco [1 ,2 ]
机构
[1] Miguel Hernandez Univ, Sport Sci Dept, Sport Res Ctr, Elche, Spain
[2] Inst Hlth & Biomed Res ISABIAL Fdn, Neurosci Grp, Alicante, Spain
[3] Miguel Hernandez Univ, Dept Clin Med, San Juan, Spain
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1182/1485
引用
收藏
页码:758 / 759
页数:2
相关论文
共 31 条
  • [1] Exploration of machine learning techniques in predicting multiple sclerosis disease course
    Zhao, Yijun
    Healy, Brian C.
    Rotstein, Delia
    Guttmann, Charles R. G.
    Bakshi, Rohit
    Weiner, Howard L.
    Brodley, Carla E.
    Chitnis, Tanuja
    [J]. PLOS ONE, 2017, 12 (04):
  • [2] Predicting clinical conversion to multiple sclerosis in patients with clinically isolated syndrome using machine learning techniques
    Ciccarelli, O.
    Kwok, P. P.
    Wottschel, V.
    Chard, D.
    Stromillo, M. L.
    De Stefano, N.
    Thompson, A. J.
    Miller, D. H.
    Alexander, D. H.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2012, 18 : 30 - 31
  • [3] Machine learning classifier to identify clinical and radiological features relevant to disease progression in multiple sclerosis
    Tommasin, S.
    Taloni, A.
    Farrelly, F. A.
    Petsas, N.
    Ruggieri, S.
    Gianni, C.
    De Giglio, L.
    Pozzilli, C.
    Pantano, P.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 467 - 468
  • [4] Modeling Subject-Level Disease Progression for Multiple Sclerosis Clinical Trials with Machine Learning
    Walsh, Jonathan
    Smith, Aaron
    Pouliot, Yannick
    Li-Bland, David
    Loukianov, Anton
    Fisher, Charles
    [J]. NEUROLOGY, 2020, 94 (15)
  • [5] Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis
    Noteboom, Samantha
    Seiler, Moritz
    Chien, Claudia
    Rane, Roshan P.
    Barkhof, Frederik
    Strijbis, Eva M. M.
    Paul, Friedemann
    Schoonheim, Menno M.
    Ritter, Kerstin
    [J]. JOURNAL OF NEUROLOGY, 2024, 271 (08) : 5577 - 5589
  • [6] CLUSTERING OF CLINICAL-ECHOCARDIOGRAPHIC PHENOTYPES OF COVID-19 DISEASE USING MACHINE-LEARNING TECHNIQUES
    Hochstadt, Aviram
    Shpigelman, Eran
    Coster, Dan
    Merdler, Ilan
    Topilsky, Yan
    Shamir, Ron
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2146 - 2146
  • [7] Modeling subject-level disease progression for multiple sclerosis in clinical trials using machine learning
    Walsh, J.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 113 - 113
  • [8] Effects of Mindfulness-based interventions on physical symptoms in people with multiple sclerosis - a systematic review and meta-analysis
    Simpson, Robert
    Simpson, Sharon
    Ramparsad, Nitish
    Lawrence, Maggie
    Booth, Jo
    Mercer, Stewart W.
    [J]. MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2020, 38
  • [9] Machine Learning Models for Predicting Celiac Disease Based on Non-invasive Clinical Symptoms
    Calin, Alina Delia
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT I, AIAI 2024, 2024, 711 : 145 - 159
  • [10] Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques
    Perez del Palomar, Amaya
    Cegonino, Jose
    Montolio, Alberto
    Orduna, Elvira
    Vilades, Elisa
    Sebastian, Berta
    Pablo, Luis E.
    Garcia-Martin, Elena
    [J]. PLOS ONE, 2019, 14 (05):