Distributed-Memory Parallel JointNMF

被引:1
|
作者
Eswar, Srinivas [1 ]
Cobb, Benjamin [2 ]
Hayashi, Koby [2 ]
Kannan, Ramakrishnan [3 ]
Ballard, Grey [4 ]
Vuduc, Richard [2 ]
Park, Haesun [2 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN USA
[4] Wake Forest Univ, Dept Comp Sci, Winston Salem, NC 27101 USA
基金
美国国家科学基金会; 美国能源部;
关键词
High Performance Computing; Multimodal Inputs; Nonnegative Matrix Factorization; NONNEGATIVE MATRIX; COMMUNICATION; MPI;
D O I
10.1145/3577193.3593733
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Joint Nonnegative Matrix Factorization (JointNMF) is a hybrid method for mining information from datasets that contain both feature and connection information. We propose distributed-memory parallelizations of three algorithms for solving the JointNMF problem based on Alternating Nonnegative Least Squares, Projected Gradient Descent, and Projected Gauss-Newton. We extend well-known communication-avoiding algorithms using a single processor grid case to our coupled case on two processor grids. We demonstrate the scalability of the algorithms on up to 960 cores (40 nodes) with 60% parallel efficiency. The more sophisticated Alternating Nonnegative Least Squares (ANLS) and Gauss-Newton variants outperform the first-order gradient descent method in reducing the objective on large-scale problems. We perform a topic modelling task on a large corpus of academic papers that consists of over 37 million paper abstracts and nearly a billion citation relationships, demonstrating the utility and scalability of the methods.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [1] Parallel ILP for distributed-memory architectures
    Nuno A. Fonseca
    Ashwin Srinivasan
    Fernando Silva
    Rui Camacho
    Machine Learning, 2009, 74 : 257 - 279
  • [2] PARALLEL ANNEALING ON DISTRIBUTED-MEMORY SYSTEMS
    LEE, FH
    STILES, GS
    SWAMINATHAN, V
    PROGRAMMING AND COMPUTER SOFTWARE, 1995, 21 (01) : 1 - 8
  • [3] Parallel ILP for distributed-memory architectures
    Fonseca, Nuno A.
    Srinivasan, Ashwin
    Silva, Fernando
    Camacho, Rui
    MACHINE LEARNING, 2009, 74 (03) : 257 - 279
  • [4] A PROCESS AND MEMORY MODEL FOR A PARALLEL DISTRIBUTED-MEMORY MACHINE
    ISTAVRINOS, P
    BORRMANN, L
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 457 : 479 - 488
  • [5] A PARALLEL TRIANGULAR SOLVER FOR A DISTRIBUTED-MEMORY MULTIPROCESSOR
    LI, GG
    COLEMAN, TF
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (03): : 485 - 502
  • [6] SYNTHETIC MODELS OF DISTRIBUTED-MEMORY PARALLEL PROGRAMS
    POPLAWSKI, DA
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1991, 12 (04) : 423 - 426
  • [7] PARALLEL TALBOT ALGORITHM FOR DISTRIBUTED-MEMORY MACHINES
    DEROSA, MA
    GIUNTA, G
    RIZZARDI, M
    PARALLEL COMPUTING, 1995, 21 (05) : 783 - 801
  • [8] Parallel feature selection for distributed-memory clusters
    Gonzalez-Dominguez, Jorge
    Bolon-Canedo, Veronica
    Freire, Borja
    Tourino, Juan
    INFORMATION SCIENCES, 2019, 496 : 399 - 409
  • [9] Numerical integration on distributed-memory parallel systems
    Ciegis, R
    Sablinskas, R
    Wasniewski, J
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, 1997, 1332 : 329 - 336
  • [10] Portable, parallel transformation: Distributed-memory approach
    Covick, LA
    Sando, KM
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1996, 17 (08) : 992 - 1001