Exploring large-scale entanglement in quantum simulation

被引:12
|
作者
Joshi, Manoj K. [1 ,2 ]
Kokail, Christian [1 ,3 ]
van Bijnen, Rick [1 ,3 ]
Kranzl, Florian [1 ,2 ]
Zache, Torsten V. [1 ,3 ]
Blatt, Rainer [1 ,2 ]
Roos, Christian F. [1 ,2 ]
Zoller, Peter [1 ,3 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, Innsbruck, Austria
[3] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
基金
美国国家科学基金会; 奥地利科学基金会; 欧盟地平线“2020”;
关键词
DUALITY CONDITION;
D O I
10.1038/s41586-023-06768-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entanglement is a distinguishing feature of quantum many-body systems, and uncovering the entanglement structure for large particle numbers in quantum simulation experiments is a fundamental challenge in quantum information science1. Here we perform experimental investigations of entanglement on the basis of the entanglement Hamiltonian (EH)2 as an effective description of the reduced density operator for large subsystems. We prepare ground and excited states of a one-dimensional XXZ Heisenberg chain on a 51-ion programmable quantum simulator3 and perform sample-efficient 'learning' of the EH for subsystems of up to 20 lattice sites4. Our experiments provide compelling evidence for a local structure of the EH. To our knowledge, this observation marks the first instance of confirming the fundamental predictions of quantum field theory by Bisognano and Wichmann5,6, adapted to lattice models that represent correlated quantum matter. The reduced state takes the form of a Gibbs ensemble, with a spatially varying temperature profile as a signature of entanglement2. Our results also show the transition from area- to volume-law scaling7 of von Neumann entanglement entropies from ground to excited states. As we venture towards achieving quantum advantage, we anticipate that our findings and methods have wide-ranging applicability to revealing and understanding entanglement in many-body problems with local interactions including higher spatial dimensions. On a 51-ion quantum simulator, we investigate locality of entanglement Hamiltonians for a Heisenberg chain, demonstrating Bisognano-Wichmann predictions of quantum field theory applied to lattice many-body systems, and observe the transition from area- to volume-law scaling of entanglement entropies.
引用
收藏
页码:539 / +
页数:10
相关论文
共 50 条
  • [1] Exploring large-scale entanglement in quantum simulation
    Manoj K. Joshi
    Christian Kokail
    Rick van Bijnen
    Florian Kranzl
    Torsten V. Zache
    Rainer Blatt
    Christian F. Roos
    Peter Zoller
    [J]. Nature, 2023, 624 : 539 - 544
  • [2] Distribution of entanglement in large-scale quantum networks
    Perseguers, S.
    Lapeyre, G. J., Jr.
    Cavalcanti, D.
    Lewenstein, M.
    Acin, A.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (09)
  • [3] Multidimensional quantum entanglement with large-scale integrated optics
    Wang, Jianwei
    Paesani, Stefano
    Ding, Yunhong
    Santagati, Raffaele
    Skrzypczyk, Paul
    Salavrakos, Alexia
    Tura, Jordi
    Augusiak, Remigiusz
    Mancinska, Laura
    Bacco, Davide
    Bonneau, Damien
    Silverstone, Joshua W.
    Gong, Qihuang
    Acin, Antonio
    Rottwitt, Karsten
    Oxenlowe, Leif K.
    O'Brien, Jeremy L.
    Laing, Anthony
    Thompson, Mark G.
    [J]. SCIENCE, 2018, 360 (6386) : 285 - 291
  • [4] Engineering large-scale entanglement in the quantum optical frequency comb
    Wang, Pei
    Fan, Wenjiang
    Chen, Moran
    Pfister, Olivier
    Menicucci, Nicolas C.
    [J]. 2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [5] AI-Enabled Large-Scale Entanglement Distribution Quantum Networks
    Wang, R.
    Joshi, S. K.
    Kanellos, G. T.
    Aktas, D.
    Rarity, J.
    Nejabati, R.
    Simeonidou, D.
    [J]. 2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [6] Broadband quasiphasematching for large-scale entanglement in quantum optical frequency combs
    Fan, Wenjiang
    Wang, Pei
    Pfister, Olivier
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [7] REDP: Reliable Entanglement Distribution Protocol Design for Large-Scale Quantum Networks
    Chen, Lutong
    Xue, Kaiping
    Li, Jian
    Li, Zhonghui
    Li, Ruidong
    Yu, Nenghai
    Sun, Qibin
    Lu, Jun
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2024, 42 (07) : 1723 - 1737
  • [8] Numerical simulation of large-scale nonlinear open quantum mechanics
    Roda-Llordes, M.
    Candoli, D.
    Grochowski, P. T.
    Riera-Campeny, A.
    Agrenius, T.
    Garcia-Ripoll, J. J.
    Gonzalez-Ballestero, C.
    Romero-Isart, O.
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [9] Energy spectra of quantum turbulence: Large-scale simulation and modeling
    Sasa, Narimasa
    Kano, Takuma
    Machida, Masahiko
    L'vov, Victor S.
    Rudenko, Oleksii
    Tsubota, Makoto
    [J]. PHYSICAL REVIEW B, 2011, 84 (05):
  • [10] Large-Scale Simulation of Shor's Quantum Factoring Algorithm
    Willsch, Dennis
    Willsch, Madita
    Jin, Fengping
    De Raedt, Hans
    Michielsen, Kristel
    [J]. MATHEMATICS, 2023, 11 (19)