Efficient Sparse Linear Bandits under High Dimensional Data

被引:0
|
作者
Wang, Xue [1 ]
Wei, Mike Mingcheng [2 ]
Yao, Tao [3 ]
机构
[1] Alibaba Grp US, Damo Acad, Bellevue, WA 98004 USA
[2] Univ Buffalo, Sch Management, Buffalo, NY USA
[3] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Sch Data Sci, Shenzhen, Peoples R China
关键词
Online Learning; Multi-Armed Bandit; Dimensionality Reduction; VARIABLE SELECTION; LASSO; RECOVERY;
D O I
10.1145/3580305.3599329
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a computationally efficient Lasso Random Project Bandit (LRP-Bandit) algorithm for sparse linear bandit problems under high-dimensional settings with limited samples. LRP-Bandit bridges Lasso and Random Projection as feature selection and dimension reduction techniques to alleviate the computational complexity and improve the regret performance. We demonstrate that for the total feature dimension d, the significant feature dimension s, and the sample size T, the expected cumulative regret under LRP-Bandit is upper bounded by (O) over tilde (T-2/3 s(3/2) log(7/6) d), where (O) over tilde suppresses the logarithmic dependence on... Further, we show that when available samples are larger than a problem-dependent threshold, the regret upper bound for LRP-Bandit can be further improved to (O) over tilde (s root T log d). These regret upper bounds on.. for both datapoor and data-rich regimes match the theoretical minimax lower bounds up to logarithmic factors. Through experiments, we show that LRP-Bandit is computationally efficient and outperforms other benchmarks on the expected cumulative regret.
引用
收藏
页码:2431 / 2443
页数:13
相关论文
共 50 条
  • [1] High-Dimensional Sparse Linear Bandits
    Hao, Botao
    Lattimore, Tor
    Wang, Mengdi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [2] Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits
    Chakraborty, Sunrit
    Roy, Saptarshi
    Tewari, Ambuj
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [3] Efficient and Robust High-Dimensional Linear Contextual Bandits
    Chen, Cheng
    Luo, Luo
    Zhang, Weinan
    Yu, Yong
    Lian, Yijiang
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 4259 - 4265
  • [4] Dynamic Batch Learning in High-Dimensional Sparse Linear Contextual Bandits
    Ren, Zhimei
    Zhou, Zhengyuan
    [J]. MANAGEMENT SCIENCE, 2024, 70 (02) : 1315 - 1342
  • [5] PopArt: Efficient Sparse Regression and Experimental Design for Optimal Sparse Linear Bandits
    Jang, Kyoungseok
    Zhang, Chicheng
    Jun, Kwang-Sung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [6] SPARSE LINEAR DISCRIMINANT ANALYSIS BY THRESHOLDING FOR HIGH DIMENSIONAL DATA
    Shao, Jun
    Wang, Yazhen
    Deng, Xinwei
    Wang, Sijian
    [J]. ANNALS OF STATISTICS, 2011, 39 (02): : 1241 - 1265
  • [7] Efficient Sparse Representation for Learning With High-Dimensional Data
    Chen, Jie
    Yang, Shengxiang
    Wang, Zhu
    Mao, Hua
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4208 - 4222
  • [8] Efficient mixture model for clustering of sparse high dimensional binary data
    Marek Śmieja
    Krzysztof Hajto
    Jacek Tabor
    [J]. Data Mining and Knowledge Discovery, 2019, 33 : 1583 - 1624
  • [9] Efficient Confidence Bounds for RBF Networks for Sparse and High Dimensional Data
    Rodrigues Neto, Abner
    Roisenberg, Mauro
    Schwedersky Neto, Guenther
    [J]. ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 423 - +
  • [10] Efficient mixture model for clustering of sparse high dimensional binary data
    Smieja, Marek
    Hajto, Krzysztof
    Tabor, Jacek
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (06) : 1583 - 1624