Numerical investigation on the long-term heating performance and sustainability analysis of medium-deep U-type borehole heat exchanger system

被引:11
|
作者
Huang, Shuai [1 ,2 ]
Li, Jiqin [1 ,2 ]
Zhu, Ke [3 ]
Dong, Jiankai [1 ,2 ]
Jiang, Yiqiang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Architecture, Harbin 150090, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Cold Reg Urban & Rural Human Settlement En, Harbin 150090, Peoples R China
[3] Shandong Jianzhu Univ, Sch Thermal Engn, Jinan 250101, Peoples R China
关键词
Medium-deep geothermal energy; Heating buildings; Medium-deep U-Type BHE; Long-term sustainability; Thermal performance; FIELD-TEST; BEND PIPE; EXTRACTION; SIMULATION; EFFICIENCY; CAPACITY; DESIGN; MODEL;
D O I
10.1016/j.energy.2023.129955
中图分类号
O414.1 [热力学];
学科分类号
摘要
Exploiting low-carbon, clean, and stable medium-deep geothermal energy is critical to achieving clean and sustainable heating for buildings in northern China. The medium-deep U-type borehole heat exchanger (MDUBHE) system is a novel technology that has emerged recently for exploiting deep geothermal energy. However, previous studies mainly analyzed the heating characteristics of the MDUBHE system in a single building type (i.e., continuous operational conditions), and the long-term (15-year) heating performance under different operational conditions is still unclear. Moreover, the heating sustainability of the system in different regions has not been clarified. Therefore, to promote the application of the MDUBHE system, this paper conducts numerical simulations to analyze the system's long-term heating performance, thermal recovery characteristics of rock and soil, and the system's energy efficiency under different operational conditions and regions. The results show that the MDUBHE system has high heating sustainability under different working conditions. After 15 years of operation, the maximum decay rate of MDUBHE's outlet water temperature is less than 3.15 % under different operating conditions and less than 3.01 % in different regions. In addition, the maximum decay rate of total system heating capacity is less than 8.86 % under different operating conditions and less than 7.60 % in different regions. Furthermore, the intermittent operation of the system and the higher thermophysical properties of rock and soil can enhance the rock-soil's thermal recovery. The MDUBHE system can efficiently operate over the long term under different working conditions. The maximum decay rates of the system's energy efficiency are less than 1.86 % under different operating conditions and less than 1.60 % in different regions. The study could promote the application of the MDUBHE system in different regions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical investigation on the long-term thermal response of a U-type medium-deep borehole heat exchanger under specific heat extraction rates
    Zhang, Qunlin
    Li, Bowen
    Liu, Fei
    Shui, Linqi
    Han, Yuanhong
    Zhao, Tong
    JOURNAL OF BUILDING ENGINEERING, 2025, 100
  • [2] Mitigation of long-term heat extraction attenuation of U-type medium-deep borehole heat exchanger by climate change
    Jiang, Jinghua
    Zhang, Xia
    Liu, Jun
    Sun, Yongjun
    Zhang, Sheng
    Wang, Fenghao
    BUILDING SIMULATION, 2024, 17 (11) : 1971 - 1987
  • [3] Influencing factors analysis for the long-term thermal performance of medium and deep U-type borehole heat exchanger system
    Huang, Shuai
    Li, Jiqin
    Zhu, Ke
    Dong, Jiankai
    Jiang, Yiqiang
    JOURNAL OF BUILDING ENGINEERING, 2023, 68
  • [4] Dynamic Heat Transfer Analysis on the New U-type Medium-Deep Borehole Ground Heat Exchanger
    Guan, Chunmin
    Fang, Zhaohong
    Zhang, Wenke
    Yao, Haiqing
    Man, Yi
    Yu, Mingzhi
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [5] Thermal performance of medium-deep U-type borehole heat exchanger based on a novel numerical model considering groundwater seepage
    Huang, Shuai
    Li, Jiqin
    Gao, Hu
    Dong, Jiankai
    Jiang, Yiqiang
    RENEWABLE ENERGY, 2024, 222
  • [6] Field test and long-term heat extraction performance evaluation of the deep U-type borehole heat exchanger system
    Cai, Wanlong
    Wang, Fenghao
    Zhang, Yuping
    Jiang, Jinghua
    Wang, Qiuwang
    Shao, Haibing
    Kolditz, Olaf
    Nagel, Thomas
    Chen, Chaofan
    RENEWABLE ENERGY, 2025, 240
  • [7] Effects of climate change on long-term building heating performance of medium-deep borehole heat exchanger coupled heat pump
    Zhang, Sheng
    Liu, Jun
    Zhang, Xia
    Niu, Dun
    Wang, Fenghao
    Chai, Jiale
    Lu, Yalin
    Sun, Yongjun
    Lin, Zhang
    ENERGY AND BUILDINGS, 2023, 293
  • [8] Effects of building load characteristics on heating performance of the medium-deep U-type borehole heat exchanger coupled heat pumps: A coupled dynamic simulation
    Huang, Shuai
    Lin, Duotong
    Dong, Jiankai
    Li, Ji
    APPLIED ENERGY, 2025, 377
  • [9] Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating
    Chen, Chaofan
    Shao, Haibing
    Naumov, Dmitri
    Kong, Yanlong
    Tu, Kun
    Kolditz, Olaf
    GEOTHERMAL ENERGY, 2019, 7 (01)
  • [10] Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating
    Chaofan Chen
    Haibing Shao
    Dmitri Naumov
    Yanlong Kong
    Kun Tu
    Olaf Kolditz
    Geothermal Energy, 7