Edge-Disjoint Steiner Trees and Connectors in Graphs

被引:0
|
作者
Li, Hengzhe [1 ]
Liu, Huayue [1 ]
Liu, Jianbing [2 ]
Mao, Yaping [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ Hartford, Dept Math, West Hartford, CT 06117 USA
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Peoples R China
关键词
Edge-connectivity; Packing Steiner trees; Packing connectors; PACKING; CONNECTIVITY;
D O I
10.1007/s00373-023-02621-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kriesell (J Comb Theory Ser B 88:53-65, 2003) proposed Conjecture 1: If S subset of V (G) is 2k-edge-connected in a graph G, then G contains k edge-disjoint S-Steiner trees. West and Wu (J Comb Theory Ser B 102:186-205, 1961) posed Conjecture 2: If S subset of V (G) is 3k-edge-connected in a graph G, then G contains k edge-disjoint S connectors, which is an analogue for S-connectors of Kriesell's Conjecture. This paper shows If |V(G) - S| <= k, then Conjecture 1 is true and if |V(G) - S| <= 2k, then Conjecture 2 is true. This paper also investigate the validity of two conjectures with certain additional conditions of |V(G) - S| or |S|.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Edge-Disjoint Steiner Trees and Connectors in Graphs
    Hengzhe Li
    Huayue Liu
    Jianbing Liu
    Yaping Mao
    [J]. Graphs and Combinatorics, 2023, 39
  • [2] Edge-disjoint spanning trees and eigenvalues of graphs
    Li, Guojun
    Shi, Lingsheng
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2784 - 2789
  • [3] Edge-disjoint spanning trees and forests of graphs
    Zhou, Jiang
    Bu, Changjiang
    Lai, Hong-Jian
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 299 : 74 - 81
  • [4] Edge-Disjoint Spanning Trees, Edge Connectivity, and Eigenvalues in Graphs
    Gu, Xiaofeng
    Lai, Hong-Jian
    Li, Ping
    Yao, Senmei
    [J]. JOURNAL OF GRAPH THEORY, 2016, 81 (01) : 16 - 29
  • [5] Edge-disjoint spanning trees and eigenvalues of regular graphs
    Cioaba, Sebastian M.
    Wong, Wiseley
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 630 - 647
  • [6] Edge-disjoint rainbow spanning trees in complete graphs
    Carraher, James M.
    Hartke, Stephen G.
    Horn, Paul
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 57 : 71 - 84
  • [7] EDGE-DISJOINT PACKINS OF GRAPHS
    CORNEIL, DG
    MASUYAMA, S
    HAKIMI, SL
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 50 (02) : 135 - 148
  • [8] Extremal Graphs for a Spectral Inequality on Edge-Disjoint Spanning Trees
    Cioaba, Sebastian M.
    Ostuni, Anthony
    Park, Davin
    Potluri, Sriya
    Wakhare, Tanay
    Wong, Wiseley
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [9] Edge-disjoint isomorphic multicolored trees and cycles in complete graphs
    Constantine, GM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (03) : 577 - 580
  • [10] Edge Disjoint Steiner Trees in Graphs Without Large Bridges
    Kriesell, Matthias
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (02) : 188 - 198