In situ ionothermally synthesized redox-active carbon nitride-confined organic small molecule cathodes for ultrastable lithium-ion batteries

被引:4
|
作者
Yang, Mingsheng [1 ]
Li, Rui [2 ]
Ma, Huige [2 ]
Zhu, Xiaoran [2 ]
Wang, Yan [3 ]
Hao, Yuxin [2 ]
Wang, Bei [2 ]
Dong, Yucheng [5 ]
Hu, Mingjun [1 ]
Yang, Jun [2 ,4 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, ShenSi Lab, Shenzhen 518110, Peoples R China
[5] South China Normal Univ, South China Acad Adv Optoelect, Int Acad Optoelect Zhaoqing, Guangzhou 510631, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
PERFORMANCE;
D O I
10.1039/d3ta01633a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite their high specific capacity and low cost, small-molecule organic cathodes usually suffer from fast capacity decay due to unavoidable dissolution in electrolytes, which largely impedes their practical applications. To resolve the above-mentioned issues, an in situ ionothermal synthesis strategy is proposed to prepare a C3N5 polymer matrix with azo groups using 2,4,6-tris(hydrazino)-s-triazine (TH) as the precursor for confining active small molecules to enhance the electrochemical stability. Herein, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) are used as exemplary molecules to demonstrate this strategy. Consequently, among optimized composites, PTTH-3 delivers the highest reversible capacity of 170 mA h g(-1) at 0.1 A g(-1), best rate capability (142 mA h g(-1) at 1 A g(-1) and 83 mA h g(-1) at 20 A g(-1)) and the most excellent cycling stability with a capacity retention of 97.5% after 2000 cycles at 1 A g(-1), better than all previously reported PTCDA cathodes. Additionally, NTTH-3 also shows far better electrochemical properties with a capacity retention of 84% after 2200 cycles at 1 A g(-1) than NTCDA alone, indicative of the universality of this strategy. This method may pave the way for the practical application of high-capacity small molecular compounds in electrochemical energy storage.
引用
收藏
页码:14240 / 14248
页数:9
相关论文
共 50 条
  • [1] In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries
    Yang, Xiubei
    Lin, Chao
    Han, Diandian
    Li, Gaojie
    Huang, Chao
    Liu, Jing
    Wu, Xueling
    Zhai, Lipeng
    Mi, Liwei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (08) : 3989 - 3995
  • [2] Redox-Active Separators for Lithium-Ion Batteries
    Wang, Zhaohui
    Pan, Ruijun
    Ruan, Changqing
    Edstrom, Kristina
    Stromme, Maria
    Nyholm, Leif
    [J]. ADVANCED SCIENCE, 2018, 5 (03):
  • [3] Polydopamine-based redox-active separators for lithium-ion batteries
    Pan, Ruijun
    Wang, Zhaohui
    Sun, Rui
    Lindh, Jonas
    Edstrom, Kristina
    Stromme, Maria
    Nyholm, Leif
    [J]. JOURNAL OF MATERIOMICS, 2019, 5 (02) : 204 - 213
  • [4] Isoreticular Regulation of TwoDimensional Redox-Active Covalent Organic Framework Cathodes for Enhanced Lithium-Ion Storage
    Xiong, Zhangyi
    Gu, Liang
    Liu, Ying
    Wang, Hao
    Shi, Le
    Wu, Xiaowei
    Liu, Lingmei
    Chen, Zhijie
    [J]. CCS CHEMISTRY, 2024,
  • [5] Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama, Yuto
    Kobayashi, Hiroaki
    Iwase, Kazuyuki
    Gambe, Yoshiyuki
    Honma, Itaru
    [J]. ADVANCED SCIENCE, 2022, 9 (12)
  • [6] In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries
    Zheng, Shiyou
    Chen, Yvonne
    Xu, Yunhua
    Yi, Feng
    Zhu, Yujie
    Liu, Yihang
    Yang, Junhe
    Wang, Chunsheng
    [J]. ACS NANO, 2013, 7 (12) : 10995 - 11003
  • [7] Bis-imidazole ring-containing bipolar organic small molecule cathodes for high-voltage and ultrastable lithium-ion batteries
    Zheng, Liping
    Ren, Jiayi
    Ma, Huige
    Yang, Mingsheng
    Yan, Xiaorong
    Li, Rui
    Zhao, Qian
    Zhang, Jianze
    Fu, Haifeng
    Pu, Xiong
    Hu, Mingjun
    Yang, Jun
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 11 (01) : 108 - 117
  • [8] Redox-active polypyrrole/bacterial cellulose bilayer separator for lithium-ion batteries
    Wang, Junzhi
    Zhang, Yun
    Peng, Xinxing
    Gong, Wei
    Ye, Dezhan
    Xu, Jie
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 93
  • [9] Redox-active organic substrates with potential applications in lithium ion and flow batteries
    Dumitrascu, Adina
    Porath, Anthony
    Rajewski, Andrew
    Gillmore, Jason
    Guarr, Thomas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [10] Electrospun-nanofibrous Redox-active separator for enhancing the capacity of Lithium-ion batteries
    Li, Yifu
    Zhang, Yi
    Zhou, Norman
    Yu, Hesheng
    Tan, Zhongchao
    [J]. CHEMICAL ENGINEERING SCIENCE, 2022, 260