Unsupervised land-use change detection using multi-temporal POI embedding

被引:1
|
作者
Yao, Yao [1 ,2 ,3 ]
Zhu, Qia [1 ]
Guo, Zijin [1 ]
Huang, Weiming [4 ]
Zhang, Yatao [5 ]
Yan, Xiaoqin [6 ]
Dong, Anning [1 ]
Jiang, Zhangwei [7 ]
Liu, Hong [7 ]
Guan, Qingfeng [1 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan, Hubei, Peoples R China
[2] Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Japan
[3] Guangdong Hong Kong Macau Joint Lab Smart Cities, Shenzhen, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Swiss Fed Inst Technol, Singapore ETH Ctr, Future Resilient Syst, Singapore, Singapore
[6] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Sch Earth & Space Sci, Beijing, Peoples R China
[7] Alibaba Grp, Hangzhou, Zhejiang, Peoples R China
关键词
Land-use change; embedding space alignment; points of interest; POI embedding; USE CLASSIFICATION; REMOTE; IMAGES;
D O I
10.1080/13658816.2023.2257262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid land-use change detection (LUCD) is pivotal for refined urban planning and management. In this paper, we investigate LUCD through learning embeddings of points of interest (POIs) from multiple temporalities. There are several prominent challenges: (1) the co-occurrence problem of multi-temporal POIs, (2) the heterogeneity of POI categorization, and (3) The lack of human-crafted labels. Therefore, multi-temporal POIs need to be aligned in the embedding space for effective LUCD. This study proposes a multi-temporal POI embedding (MT-POI2Vec) technique for LUCD in a fully unsupervised manner. In MT-POI2Vec, we first utilize random walks in POI networks to capture their single-period co-occurrence patterns; then, we leverage manifold learning to capture (1) single-period categorical semantics of POIs to enforce semantically similar POI embedding to be close and (2) cross-period categorical semantics to align multi-temporal POI embedding in a unified embedding space. We conducted experiments in Shenzhen, China, which demonstrates that the proposed method is effective. Compared with several baseline models, MT-POI2Vec can better align multi-temporal POIs and thus achieve higher performance in LUCD. In addition, our model can effectively identify areas with unchanged land use and land use changes in residential and industrial areas at a fine scale.
引用
收藏
页码:2392 / 2415
页数:24
相关论文
共 50 条
  • [1] Land-use and land-cover change detection in a semi-arid area of Niger using multi-temporal analysis of Landsat images
    Nutini, F.
    Boschetti, M.
    Brivio, P. A.
    Bocchi, S.
    Antoninetti, M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (13) : 4769 - 4790
  • [2] A Novel Method of Unsupervised Change Detection Using Multi-Temporal PolSAR Images
    Liu, Wensong
    Yang, Jie
    Zhao, Jinqi
    Yang, Le
    [J]. REMOTE SENSING, 2017, 9 (11):
  • [3] LAND COVER CHANGE DETECTION USING UNSUPERVISED KERNEL C-MEANS AND MULTI-TEMPORAL SAR DATA
    Fazel, M. A.
    Poncos, V.
    Homayouni, S.
    Motagh, M.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2744 - 2747
  • [4] Assessment of land-use/land- cover change in Muharraq Island using multi-temporal and multi-source geospatial data
    Modara, Marjan
    Belaid, Mohamed Ait
    AlJenaid, Sabah
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2014, 5 (03) : 210 - 225
  • [5] Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
    M. Usman
    R. Liedl
    M. A. Shahid
    A. Abbas
    [J]. Journal of Geographical Sciences, 2015, 25 : 1479 - 1506
  • [6] Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
    Usman, M.
    Liedl, R.
    Shahid, M. A.
    Abbas, A.
    [J]. JOURNAL OF GEOGRAPHICAL SCIENCES, 2015, 25 (12) : 1479 - 1506
  • [7] Land Use Classification and Change Detection Using Multi-temporal Landsat Imagery in Sulaimaniyah Governorate, Iraq
    Alkaradaghi, Karwan
    Ali, Salahalddin S.
    Al-Ansari, Nadhir
    Laue, Jan
    [J]. ADVANCES IN REMOTE SENSING AND GEO INFORMATICS APPLICATIONS, 2019, : 117 - 120
  • [8] Fuzzy multi-temporal land-use analysis and mine clearance application
    Landsberg, Florence
    Vanhuysse, Sabine
    Wolff, Eleonore
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (11): : 1245 - 1253
  • [9] A multi-temporal approach in MaxEnt modelling: A new frontier for land use/land cover change detection
    Arnici, Valerio
    Marcantonio, Matteo
    La Porta, Nicola
    Rocchini, Duccio
    [J]. ECOLOGICAL INFORMATICS, 2017, 40 : 40 - 49
  • [10] Fusion of Multi-temporal and Multi-sensor Hyperspectral Data for Land-Use Classification
    Piqueras-Salazar, Ignacio
    Garcia-Sevilla, Pedro
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 724 - 731