Dynamic changes in soil organic carbon induced by long-term compost application under a wheat-maize double cropping system in North China

被引:1
|
作者
Chen, Zixun [1 ]
Du, Zhangliu [1 ]
Wang, Guoan [1 ]
Zhang, Zeyu [1 ]
Li, Ji [1 ,2 ]
机构
[1] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[2] China Agr Univ, Organ Recycling Inst Suzhou, Suzhou 215128, Peoples R China
关键词
Compost application; SOC sequestration; Duration; Carbon saturation; Soil fractionation; CLIMATE-CHANGE; C SEQUESTRATION; NO-TILLAGE; SATURATION; MATTER; MECHANISMS; STABILIZATION; AMENDMENTS; RELEVANCE; TURNOVER;
D O I
10.1016/j.scitotenv.2023.169407
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil organic carbon (SOC) plays a vital role in improving soil quality and alleviating global warming. Understanding the dynamic changes in SOC is crucial for its accumulation induced by compost application in agroecosystem. In this study, soil samples were collected from three treatments: high-rate bio-compost (BioMh), lowrate bio-compost (BioMl), and control (CK, no fertilization) during 2002-2020 in a wheat-maize double cropping system in North China. The soils were separated into three functional fractions, i.e., coarse particle organic matter (cPOM, >250 mu m), microaggregates (mu Agg, 53-250 mu m) and mineral-associated organic matter (MAOM, < 53 mu m), and the associated SOC contents were determined. During 1993-2002, SOC contents in bulk soil significantly increased with the duration in the BioMh and BioMl plots. However, there was no significant correlation between SOC content and duration during 2002-2020. These results suggested that compost application positively improved SOC sequestration, while the duration of SOC sequestration (i.e., the longevity of increased SOC with time) under compost inputs maintained only 9 years. Moreover, there was a significant increase in mean annual SOC contents in bulk soil with compost application rate during 2002-2020, indicating that carbon saturation did not occur. Additionally, the SOC contents in the cPOM fraction increased with time (p < 0.01), but the corresponding mu Agg and MAOM associated SOC was insignificant (p > 0.05). The MAOM fraction exhibited no additional carbon accumulation with expanding compost application, confirming a hierarchical carbon saturation in these fractions. We concluded that soils under wheat-maize double cropping system in North China have greater potential to sequester C through additional compost inputs, despite showing hierarchical saturation behavior in the non-protected coarse particulate fraction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain
    Gong, Wei
    Yan, Xiao-yuan
    Wang, Jing-yan
    Hu, Ting-xing
    Gong, Yuan-bo
    [J]. PLANT AND SOIL, 2009, 314 (1-2) : 67 - 76
  • [2] Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain
    Dikgwatlhe, Shadrack Batsile
    Chen, Zhong-Du
    Lal, Rattan
    Zhang, Hai-Lin
    Chen, Fu
    [J]. SOIL & TILLAGE RESEARCH, 2014, 144 : 110 - 118
  • [3] Carbon Sequestration in Soil Humic Substances Under Long-Term Fertilization in a Wheat-Maize System from North China
    Song Xiang-yun
    Liu Shu-tang
    Liu Qing-hua
    Zhang Wen-ju
    Hu Chun-guang
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2014, 13 (03) : 562 - 569
  • [4] Changes in soil organic carbon fractions in response to different tillage practices under a wheat-maize double cropping system
    Xue, Jian-Fu
    Pu, Chao
    Zhao, Xin
    Wei, Yan-Hua
    Zhai, Yun-Long
    Zhang, Xiang-Qian
    Lal, Rattan
    Zhang, Hai-Lin
    [J]. LAND DEGRADATION & DEVELOPMENT, 2018, 29 (06) : 1555 - 1564
  • [5] Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain
    Wei Gong
    Xiao-yuan Yan
    Jing-yan Wang
    Ting-xing Hu
    Yuan-bo Gong
    [J]. Plant and Soil, 2009, 314 : 67 - 76
  • [6] Carbon Sequestration in Soil Humic Substances Under Long-Term Fertilization in a Wheat-Maize System from North China
    SONG Xiang-yun
    LIU Shu-tang
    LIU Qing-hua
    ZHANG Wen-ju
    HU Chun-guang
    [J]. Journal of Integrative Agriculture, 2014, 13 (03) : 562 - 569
  • [7] Immediate and long-term effects of tillage practices with crop residue on soil water and organic carbon storage changes under a wheat-maize cropping system
    Zhao, Hongxiang
    Qin, Jihao
    Gao, Tianping
    Zhang, Mengkun
    Sun, Hongchang
    Zhu, Shuwei
    Xu, Cailong
    Ning, Tangyuan
    [J]. SOIL & TILLAGE RESEARCH, 2022, 218
  • [8] Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system
    Dong, Xinliang
    Singh, Bhupinder Pal
    Li, Guitong
    Lin, Qimei
    Zhao, Xiaorong
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 252 : 200 - 207
  • [9] Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain
    Liu Hai-long
    Liu Hong-bin
    Lei Qiu-liang
    Zhai Li-mei
    Wang Hong-yuan
    Zhang Ji-zong
    Zhu Ye-ping
    Liu Sheng-ping
    Li Shi-juan
    Zhang Jing-suo
    Liu Xiao-xia
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (10) : 2300 - 2307
  • [10] Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain
    LIU Hai-long
    LIU Hong-bin
    LEI Qiu-liang
    ZHAI Li-mei
    WANG Hong-yuan
    ZHANG Ji-zong
    ZHU Ye-ping
    LIU Sheng-ping
    LI Shi-juan
    ZHANG Jing-suo
    LIU Xiao-xia
    [J]. Journal of Integrative Agriculture, 2017, 16 (10) : 2300 - 2307