Study of thermal effects in ammonia-fueled solid oxide fuel cells

被引:1
|
作者
Wang, Dan [1 ,3 ]
Wang, Luyao [1 ]
Liu, Yaxin [1 ]
Zhang, Xiang [1 ]
Liu, Zunchao [2 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Aero Engine, Zhengzhou 450046, Peoples R China
[3] Zhengzhou Univ, Key Lab Proc Heat Transfer & Energy Saving Henan P, Zhengzhou 450002, Peoples R China
[4] Zhengzhou Univ Aeronaut, Sch Aero Engine, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell; Ammonia fuel; Temperature distribution; Thermal effects; RECENT PROGRESS; PERFORMANCE; HEAT; CATALYSTS; HYDROGEN;
D O I
10.1016/j.jelechem.2023.118001
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ammonia is regarded as a promising alternative to hydrogen because of its high hydrogen content, ease of transportation and storage, and other favorable properties. However, in ammonia-fueled solid oxide fuel cell (SOFC), the intense heat absorption and excretion of ammonia decomposition and electrochemical reactions can lead to inhomogeneous temperatures inside the cell, which restricts long-life operation. For this reason, a threedimensional tubular solid oxide fuel cell thermo-electrochemical model is established to explore the thermal characteristics when using ammonia as the fuel. The errors between the power density and voltage obtained from the numerical model and the experimental data in the literature are less than 5 %, which proves the accuracy of the model in this paper. Further parametric simulations reveal that the electrochemical performance and heat production rate are strongly affected by the operating voltage. And a peak power density of 66.4 mW/cm2 is obtained at an operating voltage of 0.45 V. Additionally, increasing the inlet temperature and increasing the fuel flow rate are beneficial for improving cell efficiency, although achieving temperature uniformity remains a challenge. The ammonia pre-reforming degree can be adjusted to effectively improve the temperature distribution uniformity within the cell and improve its internal heat balance. The maximum temperature difference in 96 % pre-reformed SOFC is only 22 K, while it reaches 167 K in direct ammonia SOFC. The temperature and electrochemical performance laws revealed in this study provide a theoretical basis for the optimization of ammonia-fueled SOFC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Numerical Analysis of Ammonia-Fueled Planar Solid Oxide Fuel Cells
    Kishimoto, Masashi
    Kume, Tatsuya
    Iwai, Hiroshi
    Yoshida, Hideo
    [J]. SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2845 - 2853
  • [2] Comparative Study of Ammonia-fueled Solid Oxide Fuel Cell Systems
    Okanishi, T.
    Okura, K.
    Srifa, A.
    Muroyama, H.
    Matsui, T.
    Kishimoto, M.
    Saito, M.
    Iwai, H.
    Yoshida, H.
    Saito, M.
    Koide, T.
    Iwai, H.
    Suzuki, S.
    Takahashi, Y.
    Horiuchi, T.
    Yamasaki, H.
    Matsumoto, S.
    Yumoto, S.
    Kubo, H.
    Kawahara, J.
    Okabe, A.
    Kikkawa, Y.
    Isomura, T.
    Eguchi, K.
    [J]. FUEL CELLS, 2017, 17 (03) : 383 - 390
  • [3] A numerical study of fuel recirculation in ammonia-fueled solid oxide fuel cell stacks
    Rizvandi, Omid Babaie
    Nemati, Arash
    Frandsen, Henrik Lund
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 53 : 792 - 806
  • [4] Thermal impact performance study for the thermal management of ammonia-fueled single tubular solid oxide fuel cell
    Lai, Yanchen
    Wang, Zhe
    Cui, Daan
    Han, Fenghui
    Ji, Yulong
    Cai, Wenjian
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (06) : 2351 - 2367
  • [5] Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode
    Ni, Meng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) : 3153 - 3166
  • [6] A high-performance ammonia-fueled solid oxide fuel cell
    Ma, Qianli
    Peng, Ranran
    Lin, Yongjing
    Gao, Hanfeng
    Meng, Guangyao
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (01) : 95 - 98
  • [7] Integrated thermal reforming and electro-oxidation in ammonia-fueled tubular solid oxide fuel cells toward autothermal operation
    Jantakananuruk, Nattikarn
    Page, Jeffrey R.
    Armstrong, Cameron D.
    Persky, Joshua
    Datta, Ravindra
    Teixeira, Andrew R.
    [J]. JOURNAL OF POWER SOURCES, 2022, 548
  • [8] Catalytic Influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells
    Yang, J.
    Akagi, T.
    Okanishi, T.
    Muroyama, H.
    Matsui, T.
    Eguchi, K.
    [J]. Fuel Cells, 2015, 15 (02) : 390 - 397
  • [9] Development of 1 kW-class Ammonia-fueled Solid Oxide Fuel Cell Stack
    Kishimoto, M.
    Muroyama, H.
    Suzuki, S.
    Saito, M.
    Koide, T.
    Takahashi, Y.
    Horiuchi, T.
    Yamasaki, H.
    Matsumoto, S.
    Kubo, H.
    Takahashi, N.
    Okabe, A.
    Ueguchi, S.
    Jun, M.
    Tateno, A.
    Matsuo, T.
    Matsui, T.
    Iwai, H.
    Yoshida, H.
    Eguchi, K.
    [J]. FUEL CELLS, 2020, 20 (01) : 80 - 88
  • [10] Performance evaluation of ammonia-fueled flat-tube solid oxide fuel cells with different build-in catalysts
    Mao, Xingtong
    Sang, Junkang
    Xi, Chengqiao
    Liu, Zhixiang
    Yang, Jun
    Guan, Wanbing
    Wang, Jianxin
    Xia, Changrong
    Singhal, Subhash C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23324 - 23334