Tuning parameter selection for nonparametric derivative estimation in random design

被引:0
|
作者
Liu, Sisheng [1 ,3 ]
Charnigo, Richard [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Chang Sha, Hunan, Peoples R China
[2] Univ Kentucky, Dept Stat, Lexington, KY USA
[3] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Chang Sha 410081, Hunan, Peoples R China
关键词
Nonparametric derivative estimation; empirical derivative; tuning parameter selection; random covariate; heteroskedasticity; GENERALIZED C-P; VARIANCE-ESTIMATION; BANDWIDTH CHOICE; REGRESSION;
D O I
10.1080/02331888.2023.2278042
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of a function, or its derivatives via nonparametric regression requires selection of one or more tuning parameters. In the present work, we propose a tuning parameter selection criterion called DCp for nonparametric derivative estimation in random design. Our criterion is general in that it can be applied with any nonparametric estimation method which is linear in the observed outcomes. Charnigo et al. [A generalized $ C_p $ Cp criterion for derivative estimation. Technometrics. 2011;53(3):238-253] had proposed a GCp criterion for a similar purpose, assuming values of the covariate to be fixed and constant error variance. Here we consider the setting with random design and non-constant error variance since the covariate values will not generally be fixed and equally spaced in real data applications. We justify DCp in this setting both theoretically and by simulation. We also illustrate use of DCp with two economics data sets.
引用
收藏
页码:1402 / 1425
页数:24
相关论文
共 50 条
  • [1] Local weighted composite quantile estimation and smoothing parameter selection for nonparametric derivative function
    Xie, Qichang
    Sun, Qiankun
    Liu, Junxian
    [J]. ECONOMETRIC REVIEWS, 2020, 39 (03) : 215 - 233
  • [2] A framework to select tuning parameters for nonparametric derivative estimation
    Liu, Sisheng
    Kong, Xiaoli
    [J]. BIOMETRICAL JOURNAL, 2024, 66 (03)
  • [3] DERIVATIVE ESTIMATION IN NONPARAMETRIC REGRESSION WITH RANDOM PREDICTOR VARIABLE
    MACK, YP
    MULLER, HG
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1989, 51 : 59 - 72
  • [4] Derivative Estimation in Random Design
    Liu, Yu
    De Brabanter, Kris
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Variogram model selection via nonparametric derivative estimation
    Gorsich, DJ
    Genton, MG
    [J]. MATHEMATICAL GEOLOGY, 2000, 32 (03): : 249 - 270
  • [6] Variogram Model Selection via Nonparametric Derivative Estimation
    David J. Gorsich
    Marc G. Genton
    [J]. Mathematical Geology, 2000, 32 : 249 - 270
  • [7] Bootstrap selection of the smoothing parameter in nonparametric hazard bate estimation
    GonzalezManteiga, W
    Cao, R
    Marron, JS
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) : 1130 - 1140
  • [8] Shrinkage tuning parameter selection in precision matrices estimation
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (08) : 2839 - 2848
  • [9] OPTIMAL ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION WITH RANDOM DESIGN
    Shen, Yandi
    Gao, Chao
    Witten, Daniela
    Han, Fang
    [J]. ANNALS OF STATISTICS, 2020, 48 (06): : 3589 - 3618