Edge-guided light field image saliency detection

被引:0
|
作者
Liang Xiao [1 ,2 ]
Deng Hui-ping [1 ,2 ]
Xiang Sen [1 ,2 ]
Wu Jin [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Minist Educ, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
saliency detection; deep learning; light field image; convolutional neural network; edge detection network;
D O I
10.37188/CJLCD.2022-0239
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Aiming at the problems of incomplete detection targets and blurred edges in light field image saliency detection,this paper proposes an edge- guided light field image saliency detection method. The edge enhancement network is used to extract the main image and edge enhancement image of all-focus image,and the initial saliency map is obtained by combining the features extracted from the main image and focal stack image to improve the accuracy and completeness of detection results. The initial saliency map and edge enhancement further learns the information of edge characteristics and highlights the edge details through the feature fusion module. Finally,the boundary mixing loss function is used to optimize the saliency map with clearer boundaries. The experimental results show that on the latest light field data set, F-measure and MAE are 0. 88 and 0. 046 respectively,which are better than the existing RGB images,RGB-D images and light field image saliency detection algorithms. The proposed method can more accurately detect complete salient objects from complex scenes,and obtain saliency maps with clear edges.
引用
收藏
页码:644 / 655
页数:12
相关论文
共 25 条
  • [1] SINGLE LENS STEREO WITH A PLENOPTIC CAMERA
    ADELSON, EH
    WANG, JYA
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) : 99 - 106
  • [2] Ultrasound image segmentation based on a multi-parameter Gabor filter and multiscale local level set method
    Chen Xiao-dong
    Sheng Jing
    Yang Jin
    Cai Huai-yu
    Jin Hao
    [J]. CHINESE OPTICS, 2020, 13 (05): : 1075 - 1084
  • [3] Feng J, 2021, CHIN OPT, V14, P587, DOI 10.37188/CO.2020-0165
  • [4] Attentive Feedback Network for Boundary-Aware Salient Object Detection
    Feng, Mengyang
    Lu, Huchuan
    Ding, Errui
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1623 - 1632
  • [5] Deeply Supervised Salient Object Detection with Short Connections
    Hou, Qibin
    Cheng, Ming-Ming
    Hu, Xiaowei
    Borji, Ali
    Tu, Zhuowen
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (04) : 815 - 828
  • [6] Jun Wei, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P13022, DOI 10.1109/CVPR42600.2020.01304
  • [7] Saliency Detection on Light Field
    Li, Nianyi
    Ye, Jinwei
    Ji, Yu
    Ling, Haibin
    Yu, Jingyi
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2806 - 2813
  • [8] [李爽 Li Shuang], 2020, [中国图象图形学报, Journal of Image and Graphics], V25, P2578
  • [9] Miaofei Zhang, 2019, 2019 International Conference on Networking and Network Applications (NaNA), P81, DOI 10.1109/NaNA.2019.00023
  • [10] Nian Liu, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P13753, DOI 10.1109/CVPR42600.2020.01377