Identifying the dialectal background of American Finnish speakers using a supervised machine-learning model

被引:0
|
作者
Ivaska, Ilmari [1 ]
Johnson, Mirva [2 ]
Kurki, Tommi [1 ]
机构
[1] Univ Turku, Dept Finnish & Finnougr Languages, Turku 20014, Finland
[2] Univ Wisconsin, Dept German Nord & Slav, Madison, WI 53705 USA
关键词
dialect; Finnish; heritage language; language contact; supervised machine-learning; LANGUAGE; FORESTS; SPANISH; YORK;
D O I
10.1017/S0332586523000057
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
This study presents results of two experiments using supervised machine-learning models to examine individual Finnish speakers' dialectal backgrounds. Data come from interviews conducted with heritage speakers of Finnish in northern Wisconsin and are compared to data from the Finnish Dialect Syntax Archive. The models were constructed and then, following successful validation testing, used to identify the dialectal background of five individual American Finnish speakers. Results showed individual variation in dialectal backgrounds and some correlation to speakers' likely language input. Our approach offers a new methodological tool for examining speakers' dialectal backgrounds in situations of language contact.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] North American Hardwoods Identification Using Machine-Learning
    Lopes, Dercilio Junior Verly
    Burgreen, Greg W.
    Entsminger, Edward D.
    [J]. FORESTS, 2020, 11 (03):
  • [2] Prediction of bacterial associations with plants using a supervised machine-learning approach
    Manuel Martinez-Garcia, Pedro
    Lopez-Solanilla, Emilia
    Ramos, Cayo
    Rodriguez-Palenzuela, Pablo
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (12) : 4847 - 4861
  • [3] Identifying the controls on coastal cliff landslides using machine-learning approaches
    Dickson, Mark E.
    Perry, George L. W.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 76 : 117 - 127
  • [4] IDENTIFYING THE CAUSES OF READMISSION AMONG DIABETIC PATIENTS USING MACHINE-LEARNING
    Katsipis, I
    [J]. VALUE IN HEALTH, 2016, 19 (03) : A84 - A84
  • [5] Predicting Hydrological Drought Alert Levels Using Supervised Machine-Learning Classifiers
    Jehanzaib, Muhammad
    Shah, Sabab Ali
    Son, Ho Jun
    Jang, Sung-Hwan
    Kim, Tae-Woong
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (06) : 3019 - 3030
  • [6] Predicting Hydrological Drought Alert Levels Using Supervised Machine-Learning Classifiers
    Muhammad Jehanzaib
    Sabab Ali Shah
    Ho Jun Son
    Sung-Hwan Jang
    Tae-Woong Kim
    [J]. KSCE Journal of Civil Engineering, 2022, 26 : 3019 - 3030
  • [7] Supervised Rainfall Learning Model Using Machine Learning Algorithms
    Sharma, Amit Kumar
    Chaurasia, Sandeep
    Srivastava, Devesh Kumar
    [J]. INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 275 - 283
  • [8] Identifying peripheral arterial disease in the elderly patients using machine-learning algorithms
    Gao, Jian-Min
    Ren, Zeng-Hua
    Pan, Xin
    Chen, Yu-Xin
    Zhu, Wei
    Li, Wei
    Yang, Yan-Xi
    Fu, Guo-Xiang
    [J]. AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2022, 34 (03) : 679 - 685
  • [9] Identifying peripheral arterial disease in the elderly patients using machine-learning algorithms
    Jian-Min Gao
    Zeng-Hua Ren
    Xin Pan
    Yu-Xin Chen
    Wei Zhu
    Wei Li
    Yan-Xi Yang
    Guo-Xiang Fu
    [J]. Aging Clinical and Experimental Research, 2022, 34 : 679 - 685
  • [10] Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
    Cubuk, E. D.
    Schoenholz, S. S.
    Rieser, J. M.
    Malone, B. D.
    Rottler, J.
    Durian, D. J.
    Kaxiras, E.
    Liu, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)