Compact Almost Automorphic Solutions to Poisson's and Heat Equations

被引:1
|
作者
Chavez, Alan [1 ,2 ]
Khalil, Kamal [3 ]
Pereyra, Alejandro [4 ,5 ]
Pinto, Manuel [6 ]
机构
[1] Univ Nacl Trujillo, OASIS, Ave Juan Pablo II S-N, Trujillo 13011, Peru
[2] Inst Invest Matemat, Dept Matemat, GRACOCC Res Grp, FCFYM, Ave Juan Pablo II S-N, Trujillo 13011, Peru
[3] Univ Le Havre Normandie, CNRS, ISCN 3335, LMAH ,FR, F-76600 Le Havre, France
[4] Univ Nacl Trujillo, OASIS Res Grp, Ave Juan Pablo II S-N, Trujillo 13011, Peru
[5] Univ Nacl Trujillo, Escuela Matemat, FCFYM, Ave Juan Pablo II S-N, Trujillo 13011, Peru
[6] Univ Chile, Fac Ciencias, Dept Matemat, Las Palmeras 3425, Santiago 7800003, Chile
关键词
Almost periodic functions; Almost automorphic functions; Poisson's equation; Heat equation; PERIODIC-SOLUTIONS;
D O I
10.1007/s40840-023-01637-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, we revisit several structural properties of almost automorphic and compact almost automorphic functions from the Euclidean space Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>m$$\end{document} (m >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 1$$\end{document}) with values in a Banach space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {X}}$$\end{document}. When X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {X}}$$\end{document} is a Banach algebra, it is proven that the spaces formed by these functions are also Banach algebras. As applications, first we prove regularity of almost automorphic solution of Poisson's equation; that is, we prove that bounded continuous functions with weak (distributional) almost automorphic Laplacian are compact almost automorphic; then, we prove the compact almost automorphy in space variable of classical solutions to heat equation with almost automorphic initial datum.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Compact Almost Automorphic Solutions to Poisson’s and Heat Equations
    Alan Chávez
    Kamal Khalil
    Alejandro Pereyra
    Manuel Pinto
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [3] Compact almost automorphic solutions to integral equations with infinite delay
    Henriquez, Hernan R.
    Lizama, Carlos
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : 6029 - 6037
  • [4] Compact almost automorphic solutions for semilinear parabolic evolution equations
    Es-sebbar, Brahim
    Ezzinbi, Khalil
    Khalil, Kamal
    [J]. APPLICABLE ANALYSIS, 2022, 101 (07) : 2553 - 2579
  • [5] Almost Automorphic Solutions of Difference Equations
    Daniela Araya
    Rodrigo Castro
    Carlos Lizama
    [J]. Advances in Difference Equations, 2009
  • [6] Almost automorphic solutions of evolution equations
    Diagana, T
    Nguerekata, G
    Nguyen, VM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) : 3289 - 3298
  • [7] ALMOST AUTOMORPHIC SOLUTIONS FOR EVOLUTIONS EQUATIONS
    de Andrade, Bruno
    Mateus, Eder
    Viana, Arlucio
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 44 (01) : 105 - 119
  • [8] Almost Automorphic Solutions of Difference Equations
    Araya, Daniela
    Castro, Rodrigo
    Lizama, Carlos
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [9] Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations
    Liu, Jing-huai
    Song, Xiao-qiu
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) : 196 - 207
  • [10] Almost automorphic solutions to integral equations on the line
    Claudio Cuevas
    Carlos Lizama
    [J]. Semigroup Forum, 2009, 79 : 461 - 472