Numerical Investigation with Convergence and Stability Analyses of Integro-Differential Equations of Second Kind

被引:1
|
作者
Ullah, Saif [1 ]
Amin, Faiza [1 ]
Ali, Muzaher [2 ]
机构
[1] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
关键词
Integro-differential equations; Multistage optimal homotopy asymptotic method; convergence analysis; error's estimation; Hyers-Ulam stability; HOMOTOPY ASYMPTOTIC METHOD; APPROXIMATION;
D O I
10.1142/S0219876223500366
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, integro-differential equations are solved by using an efficient numerical technique, namely, Multistage Optimal Homotopy Asymptotic method. The existence and uniqueness of solutions are established by the application of Lipschitz condition. Convergence of approximate solutions along with stability are also carried out. Some examples are solved to highlight the vital characteristics of the applied numerical scheme. Error estimation and comparison of derived results with existing exact solutions and those results which already available in the literature through graphical illustrations and tables reveal that Multistage Optimal Homotopy Asymptotic algorithm is more efficient and fruitful.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Numerical solutions of fuzzy integro-differential equations of the second kind
    Issa, Mohammed S. Bani
    Hamoud, Ahmed A.
    Ghadle, Kirtiwant P.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (01): : 67 - 74
  • [2] Numerical method for investigation of stability of stochastic integro-differential equations
    Moscow State Univ of Means, Communication, Moscow, Russia
    [J]. Appl Numer Math, 2-3 (191-201):
  • [3] Numerical method for investigation of stability of stochastic integro-differential equations
    Potapov, VD
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) : 191 - 201
  • [4] NUMERICAL SOLUTIONS OF NONLINEAR FUZZY FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS OF THE SECOND KIND
    Mosleh, M.
    Otadi, M.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2015, 12 (02): : 117 - 127
  • [5] Stability Analysis of Solutions for a Kind of Integro-Differential Equations with a Delay
    Zhao, Jing
    Meng, Fanwei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [6] Numerical Algorithms for Solving Optimal Control Problems with Integro-Differential Equations of the Second Kind as Constraints
    Chiang, Shihchung
    Herdman, Terry L.
    [J]. 2017 13TH IEEE INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2017, : 198 - 202
  • [7] Numerical schemes with convergence for generalized fractional integro-differential equations
    Kumar, Kamlesh
    Pandey, Rajesh K.
    Sultana, Farheen
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [8] Stability of multistep second derivative methods for integro-differential equations
    Meneguette, M
    Messias, M
    Botta, VA
    [J]. ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 257 - 260
  • [9] Issues of One Kind of Integro-Differential Equations
    Chiang, Shihchung
    Wu, Wei-Chun
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 2360 - 2362
  • [10] Stability properties of second order delay integro-differential equations
    Yenicerioglu, Ali Fuat
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3109 - 3117