Incremental singular value decomposition for some numerical aspects of multiblock redundancy analysis

被引:0
|
作者
Martinez-Ruiz, Alba [1 ]
Lauro, Natale Carlo [2 ]
机构
[1] Univ Diego Portales, Santiago, Chile
[2] Univ Napoli Federico II, Naples, Italy
关键词
Matrix decomposition; Incremental algorithms; Multiblock methods; Streaming data; High-dimensional data; LEAST-SQUARES; SETS;
D O I
10.1007/s00180-023-01418-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Simultaneously processing several large blocks of streaming data is a computationally expensive problem. Based on the incremental singular value decomposition algorithm, we propose a new procedure for calculating the factorization of the multiblock redundancy matrix M, which makes the multiblock method more fast and efficient when analyzing large streaming data and high-dimensional dense matrices. The procedure transforms a big data problem into a small one by processing small high-dimensional matrices where variables are in rows. Numerical experiments illustrate the accuracy and performance of the incremental solution for analyzing streaming multiblock redundancy data. The experiments demonstrate that the incremental algorithm may decompose a large matrix with a 75% reduction in execution time. It is more efficient to first partition the matrix M and then decompose it with the incremental algorithm than to decompose the entire matrix M using the standard singular value decomposition algorithm.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] An improved incremental singular value decomposition
    [J]. Hu, R. (410907140@qq.com), 1600, Advanced Institute of Convergence Information Technology (04):
  • [2] Some comments on singular value decomposition analysis
    Cherry, S
    [J]. JOURNAL OF CLIMATE, 1997, 10 (07) : 1759 - 1761
  • [3] Incremental Kernel Discriminant Analysis Based on Generalized Singular Value Decomposition
    Jing, Xiao-yuan
    Zhang, Yong-chuan
    Yao, Yong-fang
    Lan, Chao
    Li, Min
    [J]. 2011 3RD WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING (ACC 2011), VOL 4, 2011, 4 : 46 - 52
  • [4] Implementation of Incremental Linear Discriminant Analysis using Singular Value Decomposition for Face Recognition
    James, Esther Annlin Kala
    Annadurai, S.
    [J]. FIRST INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING 2009 (ICAC 2009), 2009, : 172 - +
  • [5] Incremental Singular Value Decomposition Using Extended Power Method
    Gupta, Sharad
    Sanyal, Sudip
    [J]. COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 87 - 105
  • [6] Candid incremental singular value decomposition and classifier for face recognition
    Hu, Rong
    Xu, Weihong
    Kuang, Fangjun
    Sun, Mingming
    Xia, Ye
    [J]. Journal of Computational Information Systems, 2012, 8 (08): : 3207 - 3214
  • [7] Incremental singular value decomposition of uncertain data with missing values
    Brand, M
    [J]. COMPUTER VISON - ECCV 2002, PT 1, 2002, 2350 : 707 - 720
  • [8] SOME PROPERTIES OF THE QUOTIENT SINGULAR VALUE DECOMPOSITION
    ZHA, HY
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (01) : 50 - 62
  • [9] A NEW METHOD TO IMPROVE THE EFFICIENCY AND ACCURACY OF INCREMENTAL SINGULAR VALUE DECOMPOSITION
    Jiang, Hansi
    Chaudhuri, Arin
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 355 - 378
  • [10] Discriminant analysis based on modified generalised singular value decomposition and its numerical error analysis
    Wu, W.
    Ahmad, M. O.
    Samadi, S.
    [J]. IET COMPUTER VISION, 2009, 3 (03) : 159 - 173