Matrix integrable fifth-order mKdV equations and their soliton solutions

被引:34
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
matrix integrable equation; Riemann-Hilbert problem; soliton; RIEMANN-HILBERT APPROACH; ROGUE WAVES;
D O I
10.1088/1674-1056/ac7dc1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifth-order mKdV equations are given.
引用
收藏
页数:6
相关论文
共 50 条