Compatible Structures of Nonsymmetric Operads, Manin Products and Koszul Duality

被引:1
|
作者
Zhang, Huhu [1 ]
Gao, Xing [1 ,2 ,3 ]
Guo, Li [4 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Gansu Prov Res Ctr Basic Disciplines Math & Stat, Lanzhou 730070, Peoples R China
[3] Qinghai Nationalities Univ, Sch Math & Stat, Xining 810007, Peoples R China
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
中国国家自然科学基金;
关键词
Operad; Linear compatibility; Matching compatibility; Total compatibility; Manin product; Koszul duality; Koszul operad; Differential algebra; Rota-Baxter algebra; DENDRIFORM ALGEBRAS; COHOMOLOGIES; DEFORMATIONS;
D O I
10.1007/s10485-023-09760-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Various compatibility conditions among replicated copies of operations in a given algebraic structure have appeared in broad contexts in recent years. Taking a uniform approach, this paper presents an operadic study of compatibility conditions for nonsymmetric operads with unary and binary operations, and homogeneous quadratic and cubic relations. This generalizes the previous studies for binary quadratic operads. We consider three compatibility conditions, namely the linear compatibility, matching compatibility and total compatibility, with increasingly stronger restraints among the replicated copies. The linear compatibility is in Koszul duality to the total compatibility, while the matching compatibility is self dual. Further, each compatibility condition can be expressed in terms of either one or both of the two Manin square products. Finally it is shown that the operads defined by these compatibility conditions from the associative algebra and differential algebra are Koszul utilizing rewriting systems.
引用
收藏
页数:33
相关论文
共 19 条
  • [1] Compatible Structures of Nonsymmetric Operads, Manin Products and Koszul Duality
    Huhu Zhang
    Xing Gao
    Li Guo
    Applied Categorical Structures, 2024, 32
  • [2] KOSZUL DUALITY FOR OPERADS
    GINZBURG, V
    KAPRANOV, M
    DUKE MATHEMATICAL JOURNAL, 1994, 76 (01) : 203 - 272
  • [3] Manin products, Koszul duality, Loday algebras and Deligne conjecture
    Vallette, Bruno
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 : 105 - 164
  • [4] Operads from posets and Koszul duality
    Giraudo, Samuele
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 56 : 1 - 32
  • [5] Koszul duality of En-operads
    Fresse, Benoit
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (02): : 363 - 434
  • [6] Koszul duality of En-operads
    Benoit Fresse
    Selecta Mathematica, 2011, 17 : 363 - 434
  • [7] POINCARE/KOSZUL DUALITY FOR GENERAL OPERADS
    Amabel, Araminta
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 1 - 30
  • [8] Koszul duality for topological En-operads
    Ching, Michael
    Salvatore, Paolo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (01) : 1 - 60
  • [9] Koszul duality theory for operads over Hopf algebras
    Bellier, Olivia
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (01): : 1 - 35
  • [10] KOSZUL DUALITY FOR OPERADS (VOL 76, PG 203, 1994)
    GINZBURG, V
    KAPRANOV, M
    DUKE MATHEMATICAL JOURNAL, 1995, 80 (01) : 293 - 293