Infinite families of congruences for l-regular partition functions

被引:0
|
作者
Iwata, Nobuyuki [1 ]
机构
[1] Tokyo Univ Sci, 1-3 Kagurazaka Shinjuku Ku, Tokyo 1628601, Japan
关键词
Regular partitions; Congruences; Dedekind's eta-function; Modular forms;
D O I
10.1007/s40993-020-00227-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b(l)(n) denote the number of l-regular partitions of n, and b(l)' (n) denote the number of l-regular partitions of n into distinct parts. In this paper we prove some infinite families of new congruences for b(l)(n) and b(l)'(n).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Congruences for l-regular partition functions modulo 3
    Furcy, David
    Penniston, David
    RAMANUJAN JOURNAL, 2012, 27 (01): : 101 - 108
  • [2] Congruences for l-regular cubic partition pairs
    Naika, M. S. Mahadeva
    Nayaka, S. Shivaprasada
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2018, 67 (03) : 465 - 476
  • [3] Arithmetic of l-regular partition functions
    Penniston, David
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) : 295 - 302
  • [4] CONGRUENCES FOR l-REGULAR PARTITIONS AND BIPARTITIONS
    Cui, Su-Ping
    Gu, Nancy S. S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (02) : 513 - 526
  • [5] NEW CONGRUENCES FOR l-REGULAR OVERPARTITIONS
    Jindal, Ankita
    Meher, Nabin K.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (05) : 945 - 962
  • [6] Congruences for some l-regular partitions modulo l
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2015, 152 : 105 - 117
  • [7] Congruences for l-regular overpartitions into odd parts
    Shivashankar, C.
    Gireesh, D. S.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [8] New congruences for l-regular overpartition pairs
    Shivashankar, C.
    Gireesh, D. S.
    AFRIKA MATEMATIKA, 2022, 33 (03)
  • [9] Arithmetic properties for l-regular partition functions with distinct even parts
    Drema, Rinchin
    Saikia, Nipen
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [10] Some infinite families of congruences for t-core partition functions
    Fathima, S. N.
    Pore, U.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) : 351 - 366