RGB pixel n-grams: A texture descriptor

被引:0
|
作者
Pavon, Fatima Belen Paiva [1 ]
Gil, Maria Cristina Orue [1 ]
Noguera, Jose Luis Vazquez [1 ]
Gomez-Adorno, Helena [2 ]
Calzada-Ledesma, Valentin [3 ]
机构
[1] Univ Nacl Asuncion, Fac Politecn, San Lorenzo 2160, Paraguay
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[3] Tecnol Nacl Mexico, Inst Tecnol Super Purisima del Rincon, Mexico City, DF, Mexico
关键词
Texture descriptor; Texture images; n-grams; Texture classification; COLOR;
D O I
10.1016/j.image.2023.117028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes the "RGB Pixel N-grams"descriptor, which uses a sequence of n pixels to represent RGB color texture images. We conducted classification experiments with three different classifiers and five color texture image databases to evaluate the descriptor's performance, using accuracy as the evaluation metric. These databases include various textures from different surfaces, sometimes under different lighting, scale, or rotation conditions. The proposed descriptor proved to be robust and competitive compared to other state-of-the-art descriptors, as it has better accuracy in classification results in most databases and classifiers.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Texture Image Classification Using Pixel N-grams
    Kulkarni, Pradnya
    Stranieri, Andrew
    Ugon, Julien
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 137 - 141
  • [2] Pixel N-grams for mammographic lesion classification
    Kulkarni, Pradnya
    Stranieri, Andrew
    Ugon, Julien
    Mittal, Manish
    Kulkarni, Siddhivinayak
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS, COMPUTING AND IT APPLICATIONS (CSCITA), 2017, : 107 - 111
  • [3] The Distribution of N-Grams
    Leo Egghe
    [J]. Scientometrics, 2000, 47 : 237 - 252
  • [4] Collocations and N-grams
    FREEBURY-JONES, D. A. R. R. E. N.
    [J]. RENAISSANCE AND REFORMATION, 2021, 44 (04) : 210 - 216
  • [5] The distribution of N-grams
    Egghe, L
    [J]. SCIENTOMETRICS, 2000, 47 (02) : 237 - 252
  • [6] Comparison of Pixel N-grams with Histogram, Haralick's features and Bag-of-Visual-Words for Texture Image Classification
    Kulkarni, Pradnya
    Stranieri, Andrew
    [J]. 2018 3RD INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [7] IDF for Word N-grams
    Shirakawa, Masumi
    Hara, Takahiro
    Nishio, Shojiro
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2017, 36 (01)
  • [8] Comparing Pixel N-grams and Bag of Visual Word Features for the Classification of Diabetic Retinopathy
    Kulkarni, Pradnya
    Stranieri, Andrew
    Jelinek, Herbert
    [J]. PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCIENCE WEEK MULTICONFERENCE (ACSW 2019), 2019,
  • [9] Which Granularity to Bootstrap a Multilingual Method of Document Alignment: Character N-grams or Word N-grams?
    Lecluze, Charlotte
    Rigouste, Lois
    Giguet, Emmanuel
    Lucas, Nadine
    [J]. CORPUS RESOURCES FOR DESCRIPTIVE AND APPLIED STUDIES. CURRENT CHALLENGES AND FUTURE DIRECTIONS: SELECTED PAPERS FROM THE 5TH INTERNATIONAL CONFERENCE ON CORPUS LINGUISTICS (CILC2013), 2013, 95 : 473 - 481
  • [10] The subjective frequency of word n-grams
    Shaoul, Cyrus
    Westbury, Chris F.
    Baayen, R. Harald
    [J]. PSIHOLOGIJA, 2013, 46 (04) : 497 - 537