Sensorless Estimation of Human Joint Torque for Robust Tracking Control of Lower-Limb Exoskeleton Assistive Gait Rehabilitation

被引:2
|
作者
Abdullahi, Auwalu Muhammad [1 ]
Chaichaowarat, Ronnapee [1 ]
机构
[1] Chulalongkorn Univ, Int Sch Engn, 254 Phayathai Rd, Bangkok 10330, Thailand
关键词
rehabilitation robot; human torque estimation; extended state observer; integral sliding mode control; gait cycle tracking; OBSERVER; DESIGN;
D O I
10.3390/jsan12040053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Patients suffering from motor disorders or weakness resulting from either serious spinal cord injury or stroke often require rehabilitation therapy to regain their mobility. In the lower limbs, exoskeletons have two motors aligned with the patients' hip and knee to assist in rehabilitation exercises by supporting the patient's body structure to increase the torques at the hip and knee joints. Assistive rehabilitation is, however, challenging, as the human torque is unknown and varies from patient to patient. This poses difficulties in determining the level of assistance required for a particular patient. In this paper, therefore, a modified extended state observer (ESO)-based integral sliding mode (ISM) controller (MESOISMC) for lower-limb exoskeleton assistive gait rehabilitation is proposed. The ESO is used to estimate the unknown human torque without application of a torque sensor while the ISMC is used to achieve robust tracking of preset hip and knee joint angles by considering the estimated human torque as a disturbance. The performance of the proposed MESOISMC was assessed using the mean absolute error (MAE). The obtained results show an 85.02% and 87.38% reduction in the MAE for the hip and joint angles, respectively, when the proposed MESOISMC is compared with ISMC with both controllers tuned via LMI optimization. The results also indicate that the proposed MESOISMC method is effective and efficient for user comfort and safety during gait rehabilitation training.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Development of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton
    Sanchez-Manchola, Miguel
    Gomez-Vargas, Daniel
    Casas-Bocanegra, Diego
    Munera, Marcela
    Cifuentes, Carlos A.
    [J]. 2018 IEEE ANDESCON, 2018,
  • [2] Modeling and Simulation of a Lower Limb Exoskeleton with Computed Torque Control for Gait Rehabilitation
    Jaimes, W. J.
    Mantilla, J. F.
    Salinas, S. A.
    Navarro, H. J.
    [J]. 2021 GLOBAL MEDICAL ENGINEERING PHYSICS EXCHANGES/PAN AMERICAN HEALTH CARE EXCHANGES (GMEPE/PAHCE), 2021,
  • [3] Learning a Predictive Model of Human Gait for the Control of a Lower-limb Exoskeleton
    Aertbelien, Erwin
    De Schutter, Joris
    [J]. 2014 5TH IEEE RAS & EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2014, : 520 - 525
  • [4] Adaptive Modular Neural Control for Online Gait Synchronization and Adaptation of an Assistive Lower-Limb Exoskeleton
    Srisuchinnawong, Arthicha
    Akkawutvanich, Chaicharn
    Manoonpong, Poramate
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12449 - 12458
  • [5] Active-impedance control of a lower-limb Assistive exoskeleton
    Aguirre-Ollinger, Gabriel
    Colgate, J. Edward
    Peshkin, Michael A.
    Goswami, Ambarish
    [J]. 2007 IEEE 10TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2007, : 188 - +
  • [6] Design and Control of a Flexible Exoskeleton to Generate a Natural Full Gait for Lower-Limb Rehabilitation
    Liu, Biao
    Liu, Youwei
    Xian, Xiaoming
    Wu, Haoyi
    Xie, Longhan
    [J]. JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2023, 15 (01):
  • [7] The Passive Series Stiffness That Optimizes Torque Tracking for a Lower-Limb Exoskeleton in Human Walking
    Zhang, Juanjuan
    Collins, Steven H.
    [J]. FRONTIERS IN NEUROROBOTICS, 2017, 11
  • [8] Real-time myoelectric control for a lower-limb assistive exoskeleton
    Manuel Lara-Barrios, Carlos
    Blanco-Ortega, Andres
    Abundez Pliego, Arturo
    Colin Ocampo, Jorge
    Antonio Oliver-Salazar, Marco
    [J]. ADVANCED ROBOTICS, 2017, 31 (06) : 291 - 302
  • [9] Human-Gait-Based Tracking Control for Lower Limb Exoskeleton Robot
    Dan, Yongping
    Ge, Yifei
    Wang, Aihui
    Li, Zhuo
    [J]. JOURNAL OF ROBOTICS AND MECHATRONICS, 2022, 34 (03) : 615 - 621
  • [10] Deep Rehabilitation Gait Learning for Modeling Knee Joints of Lower-limb Exoskeleton
    Liu, Du-Xin
    Du, Wenbin
    Wu, Xinyu
    Wang, Can
    Qiao, Yu
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 1058 - 1063