ZIF-8@CsPbBr3 Nanocrystals Formed by Conversion of Pb to CsPbBr3 in Bimetallic MOFs for Enhanced Photocatalytic CO2 Reduction

被引:11
|
作者
Guo, Sai-Nan [1 ,2 ]
Wang, Dan [1 ,2 ]
Wang, Jie-Xin [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Res Ctr, Minist Educ High & Grav Engn & Technol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
composites; density functional theory calculations; metal-organic frameworks; perovskite nanocrystals; photocatalytic CO2 reduction; PEROVSKITE NANOCRYSTALS; HALIDE PEROVSKITES; TEMPERATURE;
D O I
10.1002/smtd.202301508
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite nanocrystals are embedded into metal-organic frameworks (MOFs) to create composites with high light absorption coefficients, tunable electronic properties, high specific surface area, and metal atom tunability for enhanced photocatalytic carban dioxide (CO2) reduction. However, existing perovskite-MOF structures with a large particle size are achieved based on Pb source adsorption into the pores of MOFs, which can significantly break down the porous structure, thereby resulting in a decreased specific surface area and impacting CO2 adsorption. Herein, a novel perovskite-MOF structure based on the synthesis of bimetallic Pb-containing MOFs and post-processing to convert Pb to CsPbBr3 nanocrystals (NCs) is proposed. It is discovered that the additional Pb is not introduced by adsorption, but instead engages in coordination and generates Pb-N. The produced ZIF-8@CsPbBr3 NCs are approximate to 40 nm and have an ultra-high specific surface area of 1325.08 m(2)g(-1), and excellent photovoltaic characteristics, which are beneficial for photocatalytic CO2 reduction. The electronic conversion rate of composites is 450 mol g(-1)h(-1), which is more than three times that of pure perovskites. Additionally, the superior reduction capacity is sustained after undergoing four cycles. Density Functional Thoery (DFT) simulations are used to explore the 3D charge density at the ZIF-8@CsPbBr3 NCs interface to better understand the electrical structure.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Anchoring palladium nanoparticles on CsPbBr3 perovskite nanocrystals for enhanced photocatalytic CO2 reduction
    Xiao, Hongbin
    Qian, Qingkai
    Zang, Zhigang
    SCIENCE CHINA-MATERIALS, 2023, 66 (05) : 1810 - 1819
  • [2] CsPbBr3 Nanocrystals Stabilized by Lead Oxysalts for Photocatalytic CO2 Reduction
    Wang, Yuhan
    Wang, Qi
    Jiang, Guocan
    Zhang, Qiaowen
    Li, Zhengquan
    Wang, Jin
    ACS APPLIED NANO MATERIALS, 2023, 6 (07) : 5087 - 5092
  • [3] Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction
    Shuang Zhao
    Qian Liang
    Zhongyu Li
    Hong Shi
    Zhenyu Wu
    Hui Huang
    Zhenhui Kang
    Nano Research, 2022, 15 : 5953 - 5961
  • [4] Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction
    Zhao, Shuang
    Liang, Qian
    Li, Zhongyu
    Shi, Hong
    Wu, Zhenyu
    Huang, Hui
    Kang, Zhenhui
    NANO RESEARCH, 2022, 15 (07) : 5953 - 5961
  • [5] Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes
    Chen, Zhoujie
    Hu, Yangguang
    Wang, Jin
    Shen, Qing
    Zhang, Yaohong
    Ding, Chao
    Bai, Yu
    Jiang, Guocan
    Li, Zhengquan
    Gaponik, Nikolai
    CHEMISTRY OF MATERIALS, 2020, 32 (04) : 1517 - 1525
  • [6] Surface Defect Engineering of CsPbBr3 Nanocrystals for High Efficient Photocatalytic CO2 Reduction
    Wang, Ji-Chong
    Li, Nuoya
    Idris, Ahmed Mahmoud
    Wang, Jin
    Du, Xinyi
    Pan, Zhenxiao
    Li, Zhengquan
    SOLAR RRL, 2021, 5 (07)
  • [7] Surface Halogen Compensation on CsPbBr3 Nanocrystals with SOBr2 for Photocatalytic CO2 Reduction
    Zheng, Qi
    Wang, Jin
    Li, Xin
    Bai, Yu
    Li, Yaping
    Wang, Jichong
    Shi, Yangyi
    Jiang, Xinyan
    Li, Zhengquan
    ACS MATERIALS LETTERS, 2022, 4 (09): : 1638 - 1645
  • [8] In Situ Coating CsPbBr3 Nanocrystals with Graphdiyne to Boost the Activity and Stability of Photocatalytic CO2 Reduction
    Su, Ke
    Dong, Guang-Xing
    Zhang, Wen
    Liu, Zhao-Lei
    Zhang, Min
    Lu, Tong-Bu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (45) : 50464 - 50471
  • [9] Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction
    Zhang, Zhijie
    Shu, Mengyang
    Jiang, Ying
    Xu, Jiayue
    CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [10] Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite
    Huang X.
    Zhu W.
    Li Z.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (04): : 1841 - 1856