A lightweight and personalized edge federated learning model

被引:0
|
作者
Yuan, Peiyan [1 ,2 ]
Shi, Ling [1 ,2 ]
Zhao, Xiaoyan [1 ,2 ]
Zhang, Junna [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Peoples R China
[2] Engn Lab Intelligence Business & Internet Things, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternating direction method of multipliers (ADMM); Data heterogeneity; Lightweight model; Personalized federated learning; Weight pruning;
D O I
10.1007/s40747-023-01332-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a new distributed machine learning paradigm, federated learning has gained increasing attention in the industry and research community. However, federated learning is challenging to implement on edge devices with limited resources and heterogeneous data. This study aims to realize a lightweight and personalized model through pruning and masking with insufficient resources and heterogeneous data. Particularly, the server first downloads the subnetwork to the client according to the mask, and client prunes the subnetwork with the alternating direction method of multipliers (ADMM), so as to remove the unimportant parameters and reduce the cost of training and communication. At the same time, mask is used to mark the pruning condition of the model. Then, the unpruned parts and masks of local models are transmitted to the server for aggregation. The experimental results showed that the accuracy of the proposed model was improved by 9.36%, and the communication cost was reduced by 1.45 times compared with state-of-the-art models. Last but not least, we deploy flower identification models in Android Studio to illustrate the practicality of the proposed method.
引用
下载
收藏
页码:3577 / 3592
页数:16
相关论文
共 50 条
  • [1] A lightweight and personalized edge federated learning model
    Peiyan Yuan
    Ling Shi
    Xiaoyan Zhao
    Junna Zhang
    Complex & Intelligent Systems, 2024, 10 : 3577 - 3592
  • [2] Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge
    Zhou, Yueying
    Duan, Gaoxiang
    Qiu, Tianchen
    Zhang, Lin
    Tian, Li
    Zheng, Xiaoying
    Zhu, Yongxin
    ELECTRONICS, 2024, 13 (09)
  • [3] Optimizing Efficient Personalized Federated Learning with Hypernetworks at Edge
    Zhang, Rongyu
    Chen, Yun
    Wu, Chenrui
    Wang, Fangxin
    Liu, Jiangchuan
    IEEE NETWORK, 2023, 37 (04): : 120 - 126
  • [4] FedASA: A Personalized Federated Learning With Adaptive Model Aggregation for Heterogeneous Mobile Edge Computing
    Deng, Dongshang
    Wu, Xuangou
    Zhang, Tao
    Tang, Xiangyun
    Du, Hongyang
    Kang, Jiawen
    Liu, Jiqiang
    Niyato, Dusit
    IEEE Transactions on Mobile Computing, 2024, 23 (12) : 14787 - 14802
  • [5] Personalized Federated Learning with Progressive Local Training Strategy and Lightweight Classifier
    Liu, Jianhao
    Gong, Wenjuan
    Fang, Ziyi
    Gonzàlez, Jordi
    Rodrigues, Joel
    Applied Sciences (Switzerland), 2025, 15 (05):
  • [6] Energy-Efficient Personalized Federated Continual Learning on Edge
    Yang, Zhao
    Wang, Haoyang
    Sun, Qingshuang
    IEEE Embedded Systems Letters, 2024, 16 (04) : 345 - 348
  • [7] Ferrari: A Personalized Federated Learning Framework for Heterogeneous Edge Clients
    Yao, Zhiwei
    Liu, Jianchun
    Xu, Hongli
    Wang, Lun
    Qian, Chen
    Liao, Yunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 10031 - 10045
  • [8] LSFL: A Lightweight and Secure Federated Learning Scheme for Edge Computing
    Zhang, Zhuangzhuang
    Wu, Libing
    Ma, Chuanguo
    Li, Jianxin
    Wang, Jing
    Wang, Qian
    Yu, Shui
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 365 - 379
  • [9] FLight: A lightweight federated learning framework in edge and fog computing
    Zhu, Wuji
    Goudarzi, Mohammad
    Buyya, Rajkumar
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (05): : 813 - 841
  • [10] Personalized client-edge-cloud hierarchical federated learning in mobile edge computing
    Ma, Chunmei
    Li, Xiangqian
    Huang, Baogui
    Li, Guangshun
    Li, Fengyin
    Journal of Cloud Computing, 2024, 13 (01)