Multicenter clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas

被引:6
|
作者
Zhang, Liqiang [1 ]
Pan, Hongyu [2 ]
Liu, Zhi [3 ]
Gao, Jueni [1 ]
Xu, Xinyi [1 ]
Wang, Linlin [1 ]
Wang, Jie [4 ]
Tang, Yi [5 ]
Cao, Xu [6 ]
Kan, Yubo [7 ]
Wen, Zhipeng [8 ]
Chen, Jianjun [9 ]
Huang, Dingde [9 ]
Chen, Shanxiong [2 ]
Li, Yongmei [1 ]
机构
[1] Chongqing Med Univ, Dept Radiol, Affiliated Hosp 1, Chongqing 400016, Peoples R China
[2] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
[3] Chongqing Hosp Tradit Chinese Med, Dept Radiol, Chongqing 400021, Peoples R China
[4] Chongqing Med Univ, Dept Nucl Med, Affiliated Hosp 1, Chongqing 400016, Peoples R China
[5] Chongqing Med Univ, Mol Med Diagnost & Testing Ctr, Chongqing, Peoples R China
[6] Chengdu Univ Tradit Chinese Med, Sch Med & Life Sci, Chengdu 610032, Peoples R China
[7] United Med Imaging Ctr, Dept Nucl Med, Chongqing 400038, Peoples R China
[8] Sichuan Canc Hosp, Dept Radiol, Chengdu 610042, Peoples R China
[9] Third Mil Med Univ, Army Med Univ, Southwest Hosp, Dept Nucl Med, Chongqing 400038, Peoples R China
关键词
Glioma; Fluorodeoxyglucose F18; Magnetic resonance imaging; Mutation; DIFFERENTIATION; DIAGNOSIS; ASTROCYTOMA; EXPRESSION; SELECTION;
D O I
10.1007/s00330-022-09043-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To develop a clinical radiomics-integrated model based on (18) F-fluorodeoxyglucose positron emission tomography ([F-18]FDG PET) and multi-modal MRI for predicting alpha thalassemia/mental retardation X-linked (ATRX) mutation status of IDH-mutant lower-grade gliomas (LGGs). Methods One hundred and two patients (47 ATRX mutant-type, 55 ATRX wild-type) diagnosed with IDH-mutant LGGs (CNS WHO grades 1 and 2) were retrospectively enrolled. A total of 5540 radiomics features were extracted from structural MR (sMR) images (contrast-enhanced T1-weighted imaging, CE-T1WI; T2-weighted imaging, and T2WI), functional MR (fMR) images (apparent diffusion coefficient, ADC; cerebral blood volume, CBV), and metabolic PET images ([F-18]FDG PET). The random forest algorithm was used to establish a clinical radiomics-integrated model, integrating the optimal multi-modal radiomics model with three clinical parameters. The predictive effectiveness of the models was evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA). Results The optimal multi-modal model incorporated sMR (CE-T1WI), fMR (ADC), and metabolic ([F-18]FDG) images ([F-18]FDG PET+ADC+ CE-T1WI) with the area under curves (AUCs) in the training and test groups of 0.971 and 0.962, respectively. The clinical radiomics-integrated model, incorporating [F-18]FDG PET+ADC+CE-T1WI, three clinical parameters (KPS, SFSD, and ATGR), showed the best predictive effectiveness in the training and test groups (0.987 and 0.975, respectively). Conclusions The clinical radiomics-integrated model with metabolic, structural, and functional information based on [F-18]FDG PET and multi-modal MRI achieved promising performance for predicting the ATRX mutation status of IDH-mutant LGGs.
引用
收藏
页码:872 / 883
页数:12
相关论文
共 6 条
  • [1] Multicenter clinical radiomics–integrated model based on [18F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas
    Liqiang Zhang
    Hongyu Pan
    Zhi Liu
    Jueni Gao
    Xinyi Xu
    Linlin Wang
    Jie Wang
    Yi Tang
    Xu Cao
    Yubo Kan
    Zhipeng Wen
    Jianjun Chen
    Dingde Huang
    Shanxiong Chen
    Yongmei Li
    European Radiology, 2023, 33 : 872 - 883
  • [2] Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic [18F]FET PET radiomics
    Zhicong Li
    Lena Kaiser
    Adrien Holzgreve
    Viktoria C. Ruf
    Bogdana Suchorska
    Vera Wenter
    Stefanie Quach
    Jochen Herms
    Peter Bartenstein
    Jörg-Christian Tonn
    Marcus Unterrainer
    Nathalie L. Albert
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 4415 - 4425
  • [3] Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic [18F]FET PET radiomics
    Li, Zhicong
    Kaiser, Lena
    Holzgreve, Adrien
    Ruf, Viktoria C.
    Suchorska, Bogdana
    Wenter, Vera
    Quach, Stefanie
    Herms, Jochen
    Bartenstein, Peter
    Tonn, Joerg-Christian
    Unterrainer, Marcus
    Albert, Nathalie L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (13) : 4415 - 4425
  • [4] Telomerase reverse transcriptase promoter mutation and histologic grade in IDH wild-type histological lower-grade gliomas: The value of perfusion-weighted image, diffusion-weighted image, and 18F-FDG-PET
    Ikeda, Satoshi
    Sakata, Akihiko
    Fushimi, Yasutaka
    Okuchi, Sachi
    Arakawa, Yoshiki
    Makino, Yasuhide
    Mineharu, Yohei
    Nakajima, Satoshi
    Hinoda, Takuya
    Yoshida, Kazumichi
    Miyamoto, Susumu
    Nakamoto, Yuji
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 159
  • [5] An [18F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer
    Nan Meng
    Pengyang Feng
    Xuan Yu
    Yaping Wu
    Fangfang Fu
    Ziqiang Li
    Yu Luo
    Hongna Tan
    Jianmin Yuan
    Yang Yang
    Zhe Wang
    Meiyun Wang
    European Radiology, 2024, 34 : 318 - 329
  • [6] An [18F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer
    Meng, Nan
    Feng, Pengyang
    Yu, Xuan
    Wu, Yaping
    Fu, Fangfang
    Li, Ziqiang
    Luo, Yu
    Tan, Hongna
    Yuan, Jianmin
    Yang, Yang
    Wang, Zhe
    Wang, Meiyun
    EUROPEAN RADIOLOGY, 2024, 34 (01) : 318 - 329