Some results on complete permutation polynomials and mutually orthogonal Latin squares

被引:0
|
作者
Vishwakarma, Chandan Kumar [1 ]
Singh, Rajesh P. [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, India
关键词
Permutation polynomials; Complete permutation polynomials; Latin square; AGW criterion; FINITE-FIELD PERMUTE; FORM (X(PM); ELEMENTS;
D O I
10.1016/j.ffa.2023.102320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate some classes of complete permu-tation polynomials (CPPs) with the form (L1(x))t + L2(x) for some specific linearized polynomials L1(x) and L2(x) over finite fields. Some constructions of PPs and CPPs over finite fields using the AGW criterion are also proposed. We also ob-tain some constructions of sets of Mutually orthogonal Latin squares (MOLS) using permutation polynomials over finite fields.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Isometry invariant permutation codes and mutually orthogonal Latin squares
    Janiszczak, Ingo
    Staszewski, Reiner
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (09) : 541 - 551
  • [2] Permutation arrays for powerline communication and mutually orthogonal Latin squares
    Colbourn, CJ
    Klove, T
    Ling, ACH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) : 1289 - 1291
  • [3] Further results on mutually nearly orthogonal Latin squares
    Ke-jun Chen
    Yong Zhang
    Guang-zhou Chen
    Wen Li
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 209 - 220
  • [4] Further Results on Mutually Nearly Orthogonal Latin Squares
    Ke-jun CHEN
    Yong ZHANG
    Guang-zhou CHEN
    Wen LI
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 209 - 220
  • [5] Further Results on Mutually Nearly Orthogonal Latin Squares
    Chen, Ke-jun
    Zhang, Yong
    Chen, Guang-zhou
    Li, Wen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 209 - 220
  • [6] QUADRATIC PERMUTATIONS, COMPLETE MAPPINGS AND MUTUALLY ORTHOGONAL LATIN SQUARES
    Samardjiska, Simona
    Gligoroski, Danilo
    MATHEMATICA SLOVACA, 2017, 67 (05) : 1129 - 1146
  • [7] On generalized strong complete mappings and mutually orthogonal Latin squares
    Muratovic-Ribic, Amela
    ARS MATHEMATICA CONTEMPORANEA, 2021, 21 (02)
  • [8] Some New Maximal Sets of Mutually Orthogonal Latin Squares
    P. Govaerts
    D. Jungnickel
    L. Storme
    J. A. Thas
    Designs, Codes and Cryptography, 2003, 29 : 141 - 147
  • [9] SOME CONSTRUCTIONS OF MUTUALLY ORTHOGONAL LATIN SQUARES AND SUPERIMPOSED CODES
    Seberry, Jennifer
    Tonien, Dongvu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [10] Some new maximal sets of mutually orthogonal Latin squares
    Govaerts, P
    Jungnickel, D
    Storme, L
    Thas, JA
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) : 141 - 147