Interplay between Growth Mechanism, Materials Chemistry, and Band Gap Characteristics in Sputtered Thin Films of Chalcogenide Perovskite BaZrS3

被引:12
|
作者
Mukherjee, Soham [1 ]
Riva, Stefania [1 ]
Comparotto, Corrado [2 ]
Johansson, Fredrik O. L. [3 ,4 ]
Man, Gabriel J. [1 ]
Phuyal, Dibya [5 ]
Simonov, Konstantin A. [6 ]
Just, Justus [7 ]
Klementiev, Konstantin [7 ]
Butorin, Sergei M. [1 ]
Scragg, Jonathan J. S. [2 ]
Rensmo, Hakan [1 ]
机构
[1] Uppsala Univ, Condensed Matter Phys Energy Mat, Xray Photon Sci, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[2] Uppsala Univ, Dept Mat Sci & Engn, Div Solar Cell Technol, Uppsala 75237, Sweden
[3] Inst Methods & Instrumentat Synchrotron Radiat Res, Helmholtz Zent Berlin Materialien & Energie, ISRR, D-12489 Berlin, Germany
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] KTH Royal Inst Technol, Dept Appl Phys, Div Mat & Nano Phys, SE-10691 Stockholm, Sweden
[6] Swerim AB, Dept Mat & Proc Dev, SE-16407 Kista, Sweden
[7] Lund Univ, MAX Lab 4, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
chalcogenide perovskites; BaZrS3; EXAFS; XRD; structure-property correlation; photoelectron spectroscopy; HAXPES; SPECTROSCOPY; SULFIDES;
D O I
10.1021/acsaem.3c02075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prototypical chalcogenide perovskite BaZrS3, characterized by its direct band gap, exceptionally strong light-harvesting ability, and good carrier transport properties, provides fundamental prerequisites for a promising photovoltaic material. This inspired the synthesis of BaZrS3 in the form of thin films, using sputtering and rapid thermal processing, aimed at device fabrication for future optoelectronic applications. Using a combination of short- and long-range structural information from X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD), we have elucidated how, starting from a random network of Ba, Zr, and S atoms, thermal treatment induces crystallization and growth of BaZrS3 and explained its impact on the observed photoluminescence (PL) properties. We also provide a description of the electronic structure and substantiate the surface material chemistry using a combination of depth-dependent photoelectron spectroscopy (PES) using hard X-ray (HAXPES) and traditional Al K alpha radiation. From the knowledge of the optical band gap of BaZrS3 thin films, synthesized at an optimal temperature of 900 C-degrees, and our estimation of the valence band edge position with respect to the Fermi level, one may conclude that these semiconductor films are intrinsic in nature with a slight n-type character. A detailed understanding of the growth mechanism and electronic structure of BaZrS3 thin films helps pave the way toward their utilization in photovoltaic applications.
引用
收藏
页码:11642 / 11653
页数:12
相关论文
共 49 条
  • [1] Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics
    Wei, Xiucheng
    Hui, Haolei
    Zhao, Chuan
    Deng, Chenhua
    Han, Mengjiao
    Yu, Zhonghai
    Sheng, Aaron
    Roy, Pinku
    Chen, Aiping
    Lin, Junhao
    Watson, David F.
    Sun, Yi-Yang
    Thomay, Tim
    Yang, Sen
    Jia, Quanxi
    Zhang, Shengbai
    Zeng, Hao
    NANO ENERGY, 2020, 68
  • [2] Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors
    Ramanandan, Santhanu Panikar
    Giunto, Andrea
    Stutz, Elias Z.
    Reynier, Benoit
    Lefevre, Ileane Tiphaine Francoise Marie
    Rusu, Marin
    Schorr, Susan
    Unold, Thomas
    Morral, Anna
    Marquez, Jose A.
    Dimitrievska, Mirjana
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (01):
  • [3] Machine Learning-Aided Band Gap Engineering of BaZrS3 Chalcogenide Perovskite
    Sharma, Shyam
    Ward, Zachary D.
    Bhimani, Kevin
    Sharma, Mukul
    Quinton, Joshua
    Rhone, Trevor David
    Shi, Su -Fei
    Terrones, Humberto
    Koratkar, Nikhil
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (15) : 18962 - 18972
  • [4] Local ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin films
    Pandey, Juhi
    Ghoshal, Debjit
    Dey, Dibyendu
    Gupta, Tushar
    Taraphder, A.
    Koratkar, Nikhil
    Soni, Ajay
    PHYSICAL REVIEW B, 2020, 102 (20)
  • [5] Chalcogenide Perovskite BaZrS3: Thin Film Growth by Sputtering and Rapid Thermal Processing
    Comparotto, Corrado
    Davydova, Alexandra
    Ericson, Tove
    Riekehr, Lars
    Moro, Marcos, V
    Kubart, Tomas
    Scragg, Jonathan J. S.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) : 2762 - 2770
  • [6] Making BaZrS3 Chalcogenide Perovskite Thin Films by Molecular Beam Epitaxy
    Sadeghi, Ida
    Ye, Kevin
    Xu, Michael
    Li, Yifei
    LeBeau, James M.
    Jaramillo, Rafael
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (45)
  • [7] Electronic Structure and Surface Chemistry of BaZrS3 Perovskite Powder and Sputtered Thin Film
    Riva, Stefania
    Mukherjee, Soham
    Butorin, Sergei M.
    Comparotto, Corrado
    Aggarwal, Garima
    Johannesson, Evelyn
    Abdel-Hafiez, Mahmoud
    Scragg, Jonathan
    Rensmo, Hakan
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 40210 - 40221
  • [8] A Facile Aqueous Solution Route for the Growth of Chalcogenide Perovskite BaZrS3 Films
    Dhole, Samyak
    Wei, Xiucheng
    Hui, Haolei
    Roy, Pinku
    Corey, Zachary
    Wang, Yongqiang
    Nie, Wanyi
    Chen, Aiping
    Zeng, Hao
    Jia, Quanxi
    PHOTONICS, 2023, 10 (04)
  • [9] Bandgap Tuning in BaZrS3 Perovskite Thin Films
    Sharma, Shyam
    Ward, Zachary
    Bhimani, Kevin
    Li, Kang
    Lakhnot, Aniruddha
    Jain, Rishabh
    Shi, Su-Fei
    Terrones, Humberto
    Koratkar, Nikhil
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (08) : 3306 - 3312
  • [10] Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication
    Ravi, Vikash Kumar
    Yu, Seong Hoon
    Rajput, Parikshit Kumar
    Nayak, Chandrani
    Bhattacharyya, Dibyendu
    Chung, Dae Sung
    Nag, Angshuman
    NANOSCALE, 2021, 13 (03) : 1616 - 1623