Quantitative homogenization of principal Dirichlet eigenvalue shape optimizers

被引:1
|
作者
Feldman, William M. [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
REGULARITY; MINIMIZERS; EXISTENCE;
D O I
10.1002/cpa.22184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply new results on free boundary regularity to obtain a quantitative convergence rate for the shape optimizers of the first Dirichlet eigenvalue in periodic homogenization. We obtain a linear (with logarithmic factors) convergence rate for the optimizing eigenvalue. Large scale Lipschitz free boundary regularity of almost minimizers is used to apply the optimal L2 homogenization theory in Lipschitz domains of Kenig et al. A key idea, to deal with the hard constraint on the volume, is a combination of a large scale almost dilation invariance with a selection principle argument.
引用
收藏
页码:3026 / 3079
页数:54
相关论文
共 50 条
  • [1] Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions
    Lamboley, Jimmy
    Laurain, Antoine
    Nadin, Gregoire
    Privat, Yannick
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [2] Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions
    Jimmy Lamboley
    Antoine Laurain
    Grégoire Nadin
    Yannick Privat
    [J]. Calculus of Variations and Partial Differential Equations, 2016, 55
  • [3] SINGULAR ANALYSIS OF THE OPTIMIZERS OF THE PRINCIPAL EIGENVALUE IN INDEFINITE WEIGHTED NEUMANN PROBLEMS
    Mazzoleni, Dario
    Pellacci, Benedetta
    Verzini, Gianmaria
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) : 4162 - 4192
  • [4] Dirichlet principal eigenvalue comparison theorems in geometry with torsion
    Ferreira, Ana Cristina
    Salavessa, Isabel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 700 - 723
  • [5] New bounds for the principal Dirichlet eigenvalue of planar regions
    Antunes, Pedro
    Freitas, Pedro
    [J]. EXPERIMENTAL MATHEMATICS, 2006, 15 (03) : 333 - 342
  • [6] Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential
    Merkl, F
    Wüthrich, MV
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (04) : 475 - 507
  • [7] Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential
    Franz Merkl
    Mario V. Wüthrich
    [J]. Probability Theory and Related Fields, 2001, 119 : 475 - 507
  • [8] Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators
    Davila, Gonzalo
    Rodriguez-Paredes, Andrei
    Topp, Erwin
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [9] Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators
    Gonzalo Dávila
    Andrei Rodríguez-Paredes
    Erwin Topp
    [J]. Applied Mathematics & Optimization, 2023, 88
  • [10] Asymptotic properties of an optimal principal Dirichlet eigenvalue arising in population dynamics
    Ferreri, Lorenzo
    Verzini, Gianmaria
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)