GLOBAL WELL-POSEDNESS TO THE NONHOMOGENEOUS MAGNETO-MICROPOLAR FLUID EQUATIONS WITH LARGE INITIAL DATA AND VACUUM

被引:2
|
作者
Zhong, Xin [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Nonhomogeneous magneto-micropolar fluid equations; Cauchy problem; global well-posedness; large initial data; vacuum; REGULARITY;
D O I
10.3934/dcdsb.2022102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate global well-posedness to nonhomogeneous magnetomicropolar fluid equations with zero density at infinity in R-2. We show the global existence and uniqueness of strong solutions. It should be pointed out that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Our method relies crucially upon the duality principle of BMO space and Hardy space, a lemma of Coifman-Lions-Meyer-Semmes (Coifman et al. in J Math Pures Appl 72: 247-286, 1993), and cancelation properties of the system under consideration.
引用
收藏
页码:872 / 892
页数:21
相关论文
共 50 条