共 50 条
Wollastonite addition can significantly inhibit greenhouse gas emissions of freeze-thaw farmland soil
被引:1
|作者:
Chen, Haohui
[1
,2
,3
]
Liu, Chuanxing
[1
,2
,3
]
Sun, Qiuyu
[1
,2
,3
]
Li, Boyan
[1
,2
,3
]
Jiang, Qiuxiang
[1
,2
,3
]
Wang, Zilong
[1
,2
,3
]
机构:
[1] Northeast Agr Univ, Sch Water Conservancy & Civil Engn, Harbin 150030, Heilongjiang, Peoples R China
[2] Northeast Agr Univ, Key Lab Effect Utilizat Agr Water Resources, Minist Agr, Harbin 150030, Heilongjiang, Peoples R China
[3] Northeast Agr Univ, Heilongjiang Prov Key Lab Water Resources & Water, Harbin 150030, Heilongjiang, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Winter warming;
Freeze-thaw cycle;
Wollastonite;
Farmland soil;
Greenhouse gases;
Soil nutrients;
Infrared radiation heating method;
CARBON;
NITROGEN;
SEQUESTRATION;
TEMPERATURE;
ECOSYSTEMS;
MECHANISM;
RESPONSES;
CYCLES;
D O I:
10.1016/j.eti.2024.103547
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
We investigated the effects of different treatments on soil nutrients and greenhouse gas (GHG) emissions in winter. A field experiment was conducted with four treatments: control (C), wollastonite application (CaSiO3+C), winter warming (WW), and wollastonite application + winter warming (CaSiO3+WW). The results showed the following: (1) Under the background of winter warming, the fluctuation of soil moisture and temperature increased; most of the soil carbon and nitrogen nutrients were lost; the cumulative fluxes of N2O, CH4, and CO2 increased by 58.18 %, 196.21 %, and 63.00 %, respectively, and global warming potential (GWP) increased by 62.26 %. (2) The contents of SOC, MBC, TN, TDN, NH4+-N, and MBC:MBN of farmland soil decreased after wollastonite application in winter; the cumulative fluxes of N2O, CH4, and CO2 decreased by 41.42 %, 71.72 %, and 40.84 %, respectively, and the GWP decreased by 41.30 %. (3) Under the background of winter warming, the application of wollastonite led to significant decreases in the contents of DOC, MBN, and Ca2+ in farmland soil; the cumulative fluxes of N2O, CH4, and CO2 were reduced by 47.76 %, 106.31 %, and 29.23 %, respectively, and the GWP was reduced by 30.95 %. Multiple linear regression showed that soil surface water-thermal, nutrients, and microorganisms together affected N2O emissions (R2 = 0.759). CH4 was mainly affected by soil nutrients and microorganisms (R2 = 0.237), and soil surface water-thermal and nutrients affected the CO2 flux (R2 = 0.771). Soil nutrients were the key factors affecting N2O and CH4 emissions, and the soil surface water-thermal was the key factor affecting CO2 emissions.
引用
收藏
页数:13
相关论文