Time-to-event machine learning prediction of metastatic recurrence of localized melanoma

被引:0
|
作者
Wan, G. [1 ,5 ]
Leung, B. [1 ]
DeSimone, M. [2 ]
Nguyen, N. [1 ]
Rajeh, A. [1 ]
Collier, M. [1 ]
Rashdan, H. [1 ]
Roster, K. [1 ]
Asgari, M. [1 ,5 ]
Gusev, A. [3 ]
Stagner, A. [1 ]
Lian, C.
Hurlbert, M. [4 ]
Yu, K. [5 ]
Tsao, H. [1 ,5 ]
Liu, F. [6 ]
Sorger, P. [5 ]
Semenov, Y. [1 ,5 ]
机构
[1] Massachusetts Gen Hosp, Boston, MA 02114 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Boston, MA 02115 USA
[4] Melanoma Res Alliance, Washington, DC USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Stevens Inst Technol, Hoboken, NJ 07030 USA
关键词
D O I
暂无
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
217
引用
收藏
页码:S37 / S37
页数:1
相关论文
共 50 条
  • [1] Development and validation of time-to-event models to predict metastatic recurrence of localized cutaneous melanoma
    Wan, Guihong
    Leung, Bonnie W.
    Desimone, Mia S.
    Nguyen, Nga
    Rajeh, Ahmad
    Collier, Michael R.
    Rashdan, Hannah
    Roster, Katie
    Zhou, Xu
    Moseley, Cameron B.
    Nirmal, Ajit J.
    Pelletier, Roxanne J.
    Maliga, Zoltan
    Marko, Gyorgy
    Nemeth, Istvan Balazs
    Tsao, Hensin
    Asgari, Maryam M.
    Gusev, Alexander
    Stagner, Anna M.
    Lian, Christine G.
    Hurlbert, Marc S.
    Liu, Feng
    Yu, Kun-Hsing
    Sorger, Peter K.
    Semenov, Yevgeniy R.
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2024, 90 (02) : 288 - 298
  • [2] Interpretable machine learning for time-to-event prediction in medicine and healthcare
    Baniecki, Hubert
    Sobieski, Bartlomiej
    Szatkowski, Patryk
    Bombinski, Przemyslaw
    Biecek, Przemyslaw
    [J]. Artificial Intelligence in Medicine, 2025, 159
  • [3] A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data
    Wolfson, Julian
    Bandyopadhyay, Sunayan
    Elidrisi, Mohamed
    Vazquez-Benitez, Gabriela
    Vock, David M.
    Musgrove, Donald
    Adomavicius, Gediminas
    Johnson, Paul E.
    O'Connor, Patrick J.
    [J]. STATISTICS IN MEDICINE, 2015, 34 (21) : 2941 - 2957
  • [4] The application of time-to-event analysis in machine learning prognostic models
    Zi-He Peng
    Zhi-Xin Huang
    Juan-Hua Tian
    Tie Chong
    Zhao-Lun Li
    [J]. Journal of Translational Medicine, 22
  • [5] The application of time-to-event analysis in machine learning prognostic models
    Peng, Zi-He
    Huang, Zhi-Xin
    Tian, Juan-Hua
    Chong, Tie
    Li, Zhao-Lun
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [6] A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
    Duhaze, Julianne
    Hassler, Signe
    Bachelet, Delphine
    Gleizes, Aude
    Hacein-Bey-Abina, Salima
    Allez, Matthieu
    Deisenhammer, Florian
    Fogdell-Hahn, Anna
    Mariette, Xavier
    Pallardy, Marc
    Broet, Philippe
    [J]. FRONTIERS IN IMMUNOLOGY, 2020, 11
  • [7] Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time-to-Event Analysis
    Gong, Xiajing
    Hu, Meng
    Zhao, Liang
    [J]. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (03): : 305 - 311
  • [8] Beyond the Cox Model: Applying Machine Learning Techniques with Time-to-Event Data
    Pierri, Francesca
    Perri, Damiano
    Caroni, Chrys
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT I, 2024, 14815 : 412 - 427
  • [9] A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data
    Smith, Hayley
    Sweeting, Michael
    Morris, Tim
    Crowther, Michael
    [J]. DIAGNOSTIC AND PROGNOSTIC RESEARCH, 2022, 6 (01)
  • [10] Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis
    Adeoye, John
    Hui, Liuling
    Koohi-Moghadam, Mohamad
    Tan, Jia Yan
    Choi, Siu-Wai
    Thomson, Peter
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 157