A Partial Point Cloud Completion Network Focusing on Detail Reconstruction

被引:0
|
作者
Wei, Ming [1 ,2 ]
Sun, Jiaqi [1 ,2 ]
Zhang, Yaoyuan [1 ,2 ]
Zhu, Ming [1 ]
Nie, Haitao [1 ]
Liu, Huiying [1 ,2 ]
Wang, Jiarong [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
point cloud completion; deep learning; point cloud processing; loop gating unit;
D O I
10.3390/rs15235504
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The point cloud is disordered and unstructured, and it is difficult to extract detailed features. The detailed part of the target shape is difficult to complete in the point cloud completion task. It proposes a point cloud completion network (BCA-Net) focusing on detail reconstruction, which can reduce noise and refine shapes. Specifically, it utilizes residual deformation architecture to avoid error points. The break and recombine refinement method is used to recover complete point cloud details. In addition, it proposes a bilateral confidence aggregation unit based on recurrent path aggregation to refine the coarse point cloud shape using multiple gating. Our experiments on the ShapeNet and Complete3D datasets demonstrate that our network performs better than other point cloud completion networks.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Partial-to-Partial Point Generation Network for Point Cloud Completion
    Zhang, Ziyu
    Yu, Yi
    Da, Feipeng
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 11990 - 11997
  • [2] Multi-space and detail-supplemented attention network for point cloud completion
    Min Xiang
    Hailiang Ye
    Bing Yang
    Feilong Cao
    [J]. Applied Intelligence, 2023, 53 : 14971 - 14985
  • [3] Multi-space and detail-supplemented attention network for point cloud completion
    Xiang, Min
    Ye, Hailiang
    Yang, Bing
    Cao, Feilong
    [J]. APPLIED INTELLIGENCE, 2023, 53 (12) : 14971 - 14985
  • [4] Point Cloud Completion Via Skeleton-Detail Transformer
    Zhang, Wenxiao
    Zhou, Huajian
    Dong, Zhen
    Liu, Jun
    Yan, Qingan
    Xiao, Chunxia
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (10) : 4229 - 4242
  • [5] Detail Preserved Surface Reconstruction from Point Cloud
    Zhou, Yang
    Shen, Shuhan
    Hu, Zhanyi
    [J]. SENSORS, 2019, 19 (06)
  • [6] A point contextual transformer network for point cloud completion
    Leng, Siyi
    Zhang, Zhenxin
    Zhang, Liqiang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [7] SPCNet: Stepwise Point Cloud Completion Network
    Hu, Fei
    Chen, Honghua
    Lu, Xuequan
    Zhu, Zhe
    Wang, Jun
    Wang, Weiming
    Wang, Fu Lee
    Wei, Mingqiang
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 153 - 164
  • [8] FBNet: Feedback Network for Point Cloud Completion
    Yan, Xuejun
    Yan, Hongyu
    Wang, Jingjing
    Du, Hang
    Wu, Zhihong
    Xie, Di
    Pu, Shiliang
    Lu, Li
    [J]. COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 676 - 693
  • [9] FBNet: Feedback Network for Point Cloud Completion
    Yan, Xuejun
    Yan, Hongyu
    Wang, Jingjing
    Du, Hang
    Wu, Zhihong
    Xie, Di
    Pu, Shiliang
    Lu, Li
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13662 LNCS : 676 - 693
  • [10] FBNet: Feedback Network for Point Cloud Completion
    Yan, Xuejun
    Yan, Hongyu
    Wang, Jingjing
    Du, Hang
    Wu, Zhihong
    Xie, Di
    Pu, Shiliang
    Lu, Li
    [J]. arXiv, 2022,