Buckling of a double sector thin elastic plate: Analytical solution

被引:0
|
作者
Chang, Xuyang [1 ]
Vitse, Matthieu [1 ,2 ]
Roux, Stephane [1 ]
机构
[1] Univ Paris Saclay, CentraleSupelec, ENS Paris Saclay, CNRS,LMPS, Ave Sci, F-91190 Gif Sur Yvette, France
[2] SciViz, Paris, France
关键词
Elastic buckling; Analytical solution; Geometrical instability;
D O I
10.1016/j.euromechsol.2022.104868
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Analytical solutions for elastic buckling and post-buckling geometries are scarce. The present work presents such a solution for a sample geometry, initially planar, which buckles into a complex 3D shape under tensile load. The assumptions are that the sample thickness is small, so that flexural stiffness is low compared to in -plane strain stiffness, and hence the sample can be considered inextensible. The initial geometry is composed of two disk angular sectors sharing a common edge. Under tensile loading, the two radial edges of each sector tend to align so that each half turns into two regular cone sectors. As the tensile load increases, the cone angle progressively decreases, but the same generic form holds the sample extension all along the tensile direction. Such a solution may be useful for validating numerical simulation tools, or stereo-vision shape measurement procedures.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Buckling of a double sector thin elastic plate: Analytical solution
    Chang, Xuyang
    Vitse, Matthieu
    Roux, Stéphane
    [J]. European Journal of Mechanics, A/Solids, 2023, 98
  • [2] BUCKLING OF A THIN ELASTIC PLATE
    BALANOV, ZI
    SCHWARTZMAN, YI
    [J]. APPLIED MATHEMATICS LETTERS, 1995, 8 (03) : 69 - 74
  • [3] GALERKINS METHOD FOR BUCKLING OF A THIN ELASTIC PLATE
    CIMETIERE, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (20): : 1307 - 1310
  • [4] ELASTIC-PLASTIC BUCKLING OF A THIN PLATE
    DO, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1980, 290 (07): : 143 - 146
  • [5] ON VON KARMANS EQUATIONS AND BUCKLING OF A THIN ELASTIC PLATE
    BERGER, MS
    FIFE, PC
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (06) : 1006 - &
  • [6] An analytical solution of the annular plate on elastic foundation
    Pavlou, DG
    Vlachakis, NV
    Pavlou, MG
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2005, 20 (02) : 209 - 223
  • [7] Analytical solution to the elastic bending of long and rectangular thin plate resting on rubber foundation
    Mehrara, M.
    Nategh, M. J.
    Naeeni, H. M.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2012, 226 (C5) : 1186 - 1197
  • [8] DYNAMIC BUCKLING OF A THIN ELASTIC PLATE - NONLINEAR-THEORY
    SHIVAMOGGI, BK
    [J]. JOURNAL OF SOUND AND VIBRATION, 1977, 54 (01) : 75 - 82
  • [9] On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
    Janczewska, Joanna
    Zgorzelska, Anita
    Guze, Hanna
    [J]. ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 613 - 628
  • [10] DYNAMIC BUCKLING OF A THIN RECTANGULAR PLATE ON ELASTIC-FOUNDATION
    SIRCAR, R
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1985, 8 (02): : 49 - 50