Time Series Anomaly Detection With Adversarial Reconstruction Networks

被引:30
|
作者
Liu, Shenghua [1 ]
Zhou, Bin [1 ]
Ding, Quan [1 ]
Hooi, Bryan [2 ]
Zhang, Zhengbo [3 ]
Shen, Huawei [1 ]
Cheng, Xueqi [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
[2] Natl Univ Singapore, Sch Comp Sci, Singapore 119077, Singapore
[3] Chinese Peoples Liberat Army Gen Hosp, Ctr Artificial Intelligence Med, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Time series; adversarial reconstruction networks; anomaly detection; data augmentation;
D O I
10.1109/TKDE.2021.3140058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series data naturally exist in many domains including medical data analysis, infrastructure sensor monitoring, and motion tracking. However, a very small portion of anomalous time series can be observed, comparing to the whole data. Most existing approaches are based on the supervised classification model requiring representative labels for anomaly class(es), which is challenging in real-world problems. So can we learn how to detect anomalous time ticks in an effective yet efficient way, given mostly normal time series data? Therefore, we propose an unsupervised reconstruction model named BeatGAN which learns to detect anomalies based on normal data, or data which majority of samples are normal. BeatGAN provides a framework to adversarially learn to reconstruct, which can cooperate with both 1-d CNN and RNN. Rarely observed anomalies can result in larger reconstruction errors, which are then detected based on extreme value theory. Moreover, data augmentation with dynamic time warping regularizes reconstruction and provides robustness. In the experiments, effectiveness and sensitivity are studied in both synthetic data and various real-world time series. BeatGAN achieves better accuracy and fast inference.
引用
下载
收藏
页码:4293 / 4306
页数:14
相关论文
共 50 条
  • [1] TAnoGAN: Time Series Anomaly Detection with Generative Adversarial Networks
    Bashar, Md Abul
    Nayak, Richi
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1778 - 1785
  • [2] Reconstruction-based anomaly detection for multivariate time series using contrastive generative adversarial networks
    Miao, Jiawei
    Tao, Haicheng
    Xie, Haoran
    Sun, Jianshan
    Cao, Jie
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [3] TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks
    Geiger, Alexander
    Liu, Dongyu
    Alnegheimish, Sarah
    Cuesta-Infante, Alfredo
    Veeramachaneni, Kalyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 33 - 43
  • [4] TMANomaly: Time-Series Mutual Adversarial Networks for Industrial Anomaly Detection
    Zhang, Lianming
    Bai, Wenji
    Xie, Xiaowei
    Chen, Liying
    Dong, Pingping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2263 - 2271
  • [5] Anomaly Detection for Time Series with Difference Rate Sample Entropy and Generative Adversarial Networks
    Gao, Keke
    Feng, Wenbin
    Zhao, Xia
    Yu, Chongchong
    Su, Weijun
    Niu, Yuqing
    Han, Lu
    COMPLEXITY, 2021, 2021
  • [6] Multivariate Time Series Anomaly Detection With Generative Adversarial Networks Based on Active Distortion Transformer
    Kong, Lingkun
    Yu, Jinsong
    Tang, Diyin
    Song, Yue
    Han, Danyang
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9658 - 9668
  • [7] MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
    Li, Dan
    Chen, Dacheng
    Shi, Lei
    Jin, Baihong
    Goh, Jonathan
    Ng, See-Kiong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 703 - 716
  • [8] IoT-GAN: Anomaly Detection for Time Series in IoT Based on Generative Adversarial Networks
    Chen, Xiaofei
    Zhang, Shuo
    Jiang, Qiao
    Chen, Jiayuan
    Huang, Hejiao
    Gu, Chonglin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 682 - 694
  • [9] Dis-AE-LSTM: Generative Adversarial Networks for Anomaly Detection of Time Series Data
    Mao, Sheng
    Guo, Jiansheng
    Gu, Taoyong
    Ma, Zhong
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 330 - 336
  • [10] An Adversarial Time-Frequency Reconstruction Network for Unsupervised Anomaly Detection
    Fan, Jin
    Wang, Zehao
    Wu, Huifeng
    Sun, Danfeng
    Wu, Jia
    Lu, Xin
    NEURAL NETWORKS, 2023, 168 : 44 - 56