Stress-strain curves for wire arc additively manufactured steels

被引:53
|
作者
Huang, Cheng [1 ]
Kyvelou, Pinelopi [1 ]
Gardner, Leroy [1 ]
机构
[1] Imperial Coll London, Dept Civil & Environm Engn, London, England
基金
欧盟地平线“2020”;
关键词
Carbon steel; Constitutive modelling; Metal 3D printing; Stress-strain curve; Wire arc additive manufacturing (WAAM); WAAM steel; CONTINUOUS STRENGTH METHOD; NUMERICAL-SIMULATION; DESIGN; MODEL;
D O I
10.1016/j.engstruct.2023.115628
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Interest in the use of wire arc additive manufacturing (WAAM) in construction has increased rapidly in recent years. Key to facilitating wider application is an improved understanding of the material behaviour. In particular, with structural design by finite element analysis in mind, constitutive models to describe the full range stressstrain response of WAAM steels are needed; development of such models is the focus of the present study. WAAM normal-strength steels generally exhibit a stress-strain response featuring a well-defined yield point, a yield plateau (for machined material) or slightly inclined yield plateau (for as-built material) and subsequent strain hardening, while the stress-strain response of WAAM high-strength steels is typically rounded, with no distinct yield point or plateau. This behaviour is similar to that of conventionally-produced steels, and hence can be represented analytically using existing material models, but with suitable modifications - a quad-linear or bilinear plus nonlinear hardening model and a two-stage Ramberg-Osgood model are proposed for WAAM normal- and high-strength steels, respectively. Predictive expressions or standardised values for the input parameters required in the models are developed and calibrated against a comprehensive database of WAAM steel coupon test results collected from the literature. The experimental database comprises over 600 engineering stress-strain curves and covers different feedstock wires, surface finishes (i.e. machined and as-built), material thicknesses, directions of testing and printing strategies. The proposed material models are shown to accurately predict the full stress-strain curves of WAAM steels, and are considered to be suitable for incorporation into analytical, numerical and design models for WAAM steel structures.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Stress-Strain Curves of Steels
    Tsuchida, Noriyuki
    Harjo, Stefanus
    Ohnuki, Takahisa
    Tomota, Yo
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2014, 100 (10): : 1191 - 1206
  • [2] Fatigue crack growth behaviour of wire arc additively manufactured steels
    Huang, Cheng
    Zheng, Yuanpeng
    Chen, Tao
    Ghafoori, Elyas
    Gardner, Leroy
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 173
  • [3] Mechanical testing and microstructural analysis of wire arc additively manufactured steels
    Huang, Cheng
    Kyvelou, Pinelopi
    Zhang, Ruizhi
    Ben Britton, T.
    Gardner, Leroy
    MATERIALS & DESIGN, 2022, 216
  • [4] Mechanical properties of wire arc additively manufactured steels at polar temperatures
    Huang, Cheng
    Hadjipantelis, Nicolas
    Quan, Sangchu
    Chen, Tao
    Gardner, Leroy
    STRUCTURES, 2024, 70
  • [5] Tensile stress-strain models for wire and arc additive manufacturing of carbon steels
    Liu, Yunyi
    Ye, Jun
    Guo, Xi
    Quan, Guan
    Wang, Zhen
    Zhao, Yang
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 227
  • [6] Residual stress in wire and arc additively manufactured aluminum components
    Sun, Jiamin
    Hensel, Jonas
    Ko, Markus
    Dilger, Klaus
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 65 (65) : 97 - 111
  • [7] Evaluating the Stress-Strain Relationship of the Additively Manufactured Lattice Structures
    Zhang, Long
    Bibi, Farzana
    Hussain, Imtiyaz
    Sultan, Muhammad
    Arshad, Adeel
    Hasnain, Saqib
    Alarifi, Ibrahim M.
    Alamir, Mohammed A.
    Sajjad, Uzair
    MICROMACHINES, 2023, 14 (01)
  • [8] Stress-strain curves for hot-rolled steels
    Yun, Xiang
    Gardner, Leroy
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2017, 133 : 36 - 46
  • [9] MODELING THE STRESS-STRAIN CURVES OF DUAL PHASE STEELS
    RIOS, PR
    GUIMARAES, JRC
    CHAWLA, KK
    SCRIPTA METALLURGICA, 1981, 15 (08): : 899 - 904
  • [10] ANISOTROPY OF THE STRESS-STRAIN CURVES FOR LINE PIPE STEELS
    Nagai, Kensuke
    Shinohara, Yasuhiro
    Sakamoto, Shinya
    Tsuru, Eiji
    Asahi, Hitoshi
    Hara, Takuya
    PROCEEDINGS OF THE ASME INTERNATIONAL PIPELINE CONFERENCE 2010, VOL 4, 2010, : 59 - +