Finite features of quantum de Sitter space

被引:14
|
作者
Anninos, Dionysios [1 ]
Galante, Damian A. [1 ]
Muhlmann, Beatrix [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quantum; de Sitter; finiteness; gravity; cosmology; CONFORMAL FIELD-THEORIES; CHERN-SIMONS THEORY; LIOUVILLE; INTEGRALS; EQUATIONS; GRAVITY; ENTROPY; MODELS; STATES; 2D;
D O I
10.1088/1361-6382/acaba5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider degrees of freedom for a quantum de Sitter spacetime. The problem is studied from both a Lorentzian and a Euclidean perspective. From a Lorentzian perspective, we compute dynamical properties of the static patch de Sitter horizon. These are compared to dynamical features of a black hole. We point out differences suggestive of non-standard thermal behaviour for the de Sitter horizon. We establish that geometries interpolating between an asymptotically AdS(2) x S-2 space and a dS(4) interior are compatible with the null energy condition, albeit with a non-standard decreasing radial size of S-2. The putative holographic dual of an asymptotic AdS(2) spacetime is comprised of a finite number of underlying degrees of freedom. From a Euclidean perspective we consider the gravitational path integral for fields over compact manifolds. In two-dimensions, we review Polchinski's BRST localisation of Liouville theory and propose a supersymmetric extension of timelike Liouville theory which exhibits supersymmetric localisation. We speculate that localisation of the Euclidean gravitational path integral is a reflection of a finite number of of freedom in a de Sitter Universe.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Can quantum de Sitter space have finite entropy?
    Krishnan, Chethan
    Di Napoli, Edoardo
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (13) : 3457 - 3463
  • [2] Quantum Mechanics in de Sitter Space
    Ghosh, Subir
    Mignemi, Salvatore
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (06) : 1803 - 1808
  • [3] QUANTUM INSTABILITY OF DE SITTER SPACE
    ANTONIADIS, I
    ILIOPOULOS, J
    TOMARAS, TN
    PHYSICAL REVIEW LETTERS, 1986, 56 (13) : 1319 - 1322
  • [4] Quantum Mechanics in de Sitter Space
    Subir Ghosh
    Salvatore Mignemi
    International Journal of Theoretical Physics, 2011, 50 : 1803 - 1808
  • [5] Quantum Correlations in de Sitter Space
    Soda, Jiro
    Kanno, Sugumi
    Shock, Jonathan P.
    UNIVERSE, 2017, 3 (01):
  • [6] Quantum thermodynamics of de Sitter space
    Alicki, Robert
    Barenboim, Gabriela
    Jenkins, Alejandro
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [7] Quantum discord in de Sitter space
    Kanno, Sugumi
    Shock, Jonathan P.
    Soda, Jiro
    PHYSICAL REVIEW D, 2016, 94 (12)
  • [8] Quantum of volume in de Sitter space
    Mielczarek, Jakub
    Piechocki, Wlodzimierz
    PHYSICAL REVIEW D, 2011, 83 (10):
  • [9] Finite number of states, de Sitter space and quantum groups at roots of unity
    Pouliot, P
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (01) : 145 - 162
  • [10] Towards a quantum theory of de Sitter space
    Banks, Tom
    Fiol, Bartomeu
    Morisse, Alexander
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12):