Investigation of social and cognitive predictors in non-transition ultra-high-risk' individuals for psychosis using spiking neural networks

被引:4
|
作者
Doborjeh, Zohreh [1 ,2 ,3 ]
Doborjeh, Maryam [4 ]
Sumich, Alexander [5 ,6 ]
Singh, Balkaran [4 ]
Merkin, Alexander [7 ,8 ]
Budhraja, Sugam [4 ]
Goh, Wilson [9 ,10 ,11 ]
Lai, Edmund M-K [4 ]
Williams, Margaret [12 ]
Tan, Samuel [10 ]
Lee, Jimmy [10 ,13 ]
Kasabov, Nikola [4 ,14 ,15 ]
机构
[1] Univ Auckland, Fac Med & Hlth Sci, Sch Populat Hlth, Audiol Dept, Auckland, New Zealand
[2] Univ Auckland, Ctr Brain Res, Auckland, New Zealand
[3] Univ Waikato, Sch Psychol, Hamilton, New Zealand
[4] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Sch Engn Comp & Math Sci, Auckland 1010, New Zealand
[5] Nottingham Trent Univ, Sch Psychol, Nottingham, England
[6] Auckland Univ Technol, Dept Psychol & Neurosci, Auckland, New Zealand
[7] Auckland Univ Technol, Inst Stroke & Appl Neurosci, Auckland, New Zealand
[8] Univ Konstanz, Dept Psychol, Res Methods Assessment & Sci, Constance, Germany
[9] Nanyang Technol Univ, Sch Biol Sci, Singapore, Singapore
[10] Nanyang Technol Univ, Lee Kong Chian Sch Med, Singapore, Singapore
[11] Nanyang Technol Univ, Ctr Biomed Informat, Singapore, Singapore
[12] Auckland Univ Technol, Dept Publ Hlth & Psychosocial Studies, Auckland, New Zealand
[13] Nanyang Technol Univ, Inst Mental Hlth, Singapore, Singapore
[14] Ulster Univ, Intelligent Syst Res Ctr, Londonderry, North Ireland
[15] Bulgarian Acad Sci, Inst Informat & Commun Technol IICT, Sofia, Bulgaria
基金
新加坡国家研究基金会;
关键词
PERCEPTUAL CLOSURE; SCHIZOPHRENIA; STATE; RECOGNITION; ACCURACY; SKILLS;
D O I
10.1038/s41537-023-00335-2
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 x 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56-64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks
    Zohreh Doborjeh
    Maryam Doborjeh
    Alexander Sumich
    Balkaran Singh
    Alexander Merkin
    Sugam Budhraja
    Wilson Goh
    Edmund M-K Lai
    Margaret Williams
    Samuel Tan
    Jimmy Lee
    Nikola Kasabov
    Schizophrenia, 9
  • [2] The course of neurocognition and social functioning in individuals at ultra-high-risk for psychosis
    Niendam, T. A.
    Bearden, C. E.
    Zinberg, J.
    Johnson, J. K.
    O'Brien, M. P.
    Cannon, T. D.
    SCHIZOPHRENIA BULLETIN, 2007, 33 (02) : 570 - 570
  • [3] Cortical Thickness Reduction in Individuals at Ultra-High-Risk for Psychosis
    Jung, Wi Hoon
    Kim, June Sic
    Jang, Joon Hwan
    Choi, Jung-Seok
    Jung, Myung Hun
    Park, Ji-Young
    Han, Ji Yeon
    Choi, Chi-Hoon
    Kang, Do-Hyung
    Chung, Chun Kee
    Kwon, Jun Soo
    SCHIZOPHRENIA BULLETIN, 2011, 37 (04) : 839 - 849
  • [4] Ultra high-risk state for psychosis and non-transition: A systematic review
    Simon, Andor E.
    Velthorst, Eva
    Nieman, Dorien H.
    Linszen, Don
    Umbricht, Daniel
    de Haan, Lieuwe
    SCHIZOPHRENIA RESEARCH, 2011, 132 (01) : 8 - 17
  • [5] SCHIZOPHRENIA POLYGENIC RISK SCORE CORRELATES WITH DECREASED COGNITIVE FUNCTIONS IN ULTRA-HIGH-RISK INDIVIDUALS FOR PSYCHOSIS
    He, Qin
    Kebir, Oussama
    Houle, Gabrielle
    Liao, Calwing
    Dion, Patrick A.
    Rouleau, Guy A.
    Krebs, Marie-Odile
    Chaumette, Boris
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S258 - S259
  • [6] Prospective outcome of early intervention for individuals at ultra-high-risk for psychosis
    Shim, GeumSook
    Kang, Do-Hyung
    Choi, Jung-Seok
    Jung, Myung Hun
    Kwon, Soo Jin
    Jang, Go Eun
    Kwon, Jun Soo
    EARLY INTERVENTION IN PSYCHIATRY, 2008, 2 (04) : 277 - 284
  • [7] Ultra-High-Risk that do not transition to psychosis. What happens?
    Ruas Resende, M. B.
    Agostinho, F.
    Nogueira, R.
    Cotovio, D.
    Silva, F. A.
    Lousada, R.
    EUROPEAN PSYCHIATRY, 2024, 67 : S737 - S737
  • [8] Change in social functioning in individuals at ultra-high-risk for psychosis: 1-year longitudinal study
    Jang, J. H.
    Hur, J. -W.
    Shim, G.
    Kwon, S. J.
    Park, H. Y.
    Kim, E.
    Jang, G. -E.
    Kwon, J. S.
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2010, 13 : 222 - 222
  • [9] Clinical and brain structural predictors of 'Transition to Psychosis' or 'Risk Remission' in individuals at ultra-high risk for psychosis
    Krakauer, Kristine
    Glenthoj, Birte Y.
    Rostrup, Egill
    Ebdrup, Bjorn H.
    Randers, Lasse
    Nordholm, Dorte
    Glenthoj, Louise B.
    Wenneberg, Christina
    Nordentoft, Merete
    EARLY INTERVENTION IN PSYCHIATRY, 2014, 8 : 147 - 147
  • [10] Predictors of Transition to Psychosis in Individuals at Clinical High Risk
    Jean Addington
    Megan Farris
    Jacqueline Stowkowy
    Olga Santesteban-Echarri
    Paul Metzak
    Mohammed Shakeel Kalathil
    Current Psychiatry Reports, 2019, 21