Improving Pure Component Property Estimation in Specialty Chemistry Using Local Estimators for Group Contribution Models

被引:1
|
作者
Weinhold, Hannes [3 ]
Wekenborg, Klaus [1 ]
Rarey, Jurgen [2 ]
机构
[1] Merck Elect KGaA, D-64293 Darmstadt, Germany
[2] Rareytec Co Ltd, 251M1 Dankwian, Nakhon Ratchasima 30190, Thailand
[3] Merck Life Sci KGaA, D-64293 Darmstadt, Germany
关键词
NONELECTROLYTE ORGANIC-COMPOUNDS; UNIFAC MODEL; VAPOR-PRESSURE; EXTENSION;
D O I
10.1021/acs.iecr.3c02538
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Specialty chemical products are essential for many aspects of modern life, but their development and production can be costly. To improve the efficiency of the downstream production process through computerized simulation, accurate physical property data are necessary. Our proposed method involves using a local estimator to increase the accuracy of conventional group contribution models for specialty chemical products, byproducts, and intermediates. By leveraging available data on similar molecules, the local estimator reduces the median relative absolute error in melting and boiling point temperature and vapor pressure estimation by up to 50%. This will enable faster and more accurate development of the downstream production process. The approach was verified by using different sets of published and industry data and can easily be extended to further properties.
引用
下载
收藏
页码:16902 / 16913
页数:12
相关论文
共 17 条
  • [1] Improving the Accuracy of Activity Coefficient Estimation in Specialty Chemistry Using Local Estimators
    Weinhold H.
    Peterson L.
    Müller T.D.
    Wekenborg K.
    Grünewald M.
    Rarey J.
    Industrial and Engineering Chemistry Research, 63 (17): : 7902 - 7914
  • [2] Improving the Accuracy of Activity Coefficient Estimation in Specialty Chemistry Using Local Estimators
    Weinhold, Hannes
    Peterson, Luisa
    Mueller, Tom David
    Wekenborg, Klaus
    Gruenewald, Marcus
    Rarey, Juergen
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (17) : 7902 - 7914
  • [3] Estimation of pure component properties. Part 2. Estimation of critical property data by group contribution
    Nannoolal, Yash
    Rarey, Juergen
    Ramjugernath, Deresh
    FLUID PHASE EQUILIBRIA, 2007, 252 (1-2) : 1 - 27
  • [4] Group-contribution based estimation of pure component properties
    Marrero, J
    Gani, R
    FLUID PHASE EQUILIBRIA, 2001, 183 : 183 - 208
  • [5] CORRELATION OF PURE COMPONENT GIBBS ENERGY USING UNIFAC GROUP CONTRIBUTION
    FREDENSLUND, A
    RASMUSSEN, P
    AICHE JOURNAL, 1979, 25 (01) : 203 - 205
  • [6] Group Contribution-Based Graph Convolution Network: Pure Property Estimation Model
    Hwang, Sun Yoo
    Kang, Jeong Won
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2022, 43 (09)
  • [7] Group Contribution-Based Graph Convolution Network: Pure Property Estimation Model
    Sun Yoo Hwang
    Jeong Won Kang
    International Journal of Thermophysics, 2022, 43
  • [8] Next generation pure component property estimation models: With and without machine learning techniques
    Alshehri, Abdulelah S.
    Tula, Anjan K.
    You, Fengqi
    Gani, Rafiqul
    AICHE JOURNAL, 2022, 68 (06)
  • [9] PURE-COMPONENT VAPOR-PRESSURES USING UNIFAC GROUP CONTRIBUTION
    JENSEN, T
    FREDENSLUND, A
    RASMUSSEN, P
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1981, 20 (03): : 239 - 246
  • [10] Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis
    Hukkerikar, Amol Shivajirao
    Sarup, Bent
    Ten Kate, Antoon
    Abildskov, Jens
    Sin, Guerkan
    Gani, Rafiqul
    FLUID PHASE EQUILIBRIA, 2012, 321 : 25 - 43