Resolution of Virtual Depth Sectioning from Four-Dimensional Scanning Transmission Electron Microscopy

被引:5
|
作者
Terzoudis-Lumsden, E. W. C. [1 ]
Petersen, T. C. [1 ,2 ]
Brown, H. G. [3 ]
Pelz, P. M. [4 ,5 ]
Ophus, C. [6 ]
Findlay, S. D. [1 ]
机构
[1] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia
[2] Monash Univ, Monash Ctr Electron Microscopy, Melbourne, Vic 3800, Australia
[3] Univ Melbourne, Bio21 Mol Sci & Biotechnol Inst, Ian Holmes Imaging Ctr, Melbourne, Vic 3052, Australia
[4] Friedrich Alexander Univ Erlangen Nurnberg, Inst Microand Nanostruct Res, D-91058 Erlangen, Germany
[5] Friedrich Alexander Univ Erlangen Nurnberg, Ctr Nanoanal & Electron Microscopy, D-91058 Erlangen, Germany
[6] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA
基金
澳大利亚研究理事会;
关键词
depth sectioning; parallax; scattering matrix; 3D imaging; 4D-STEM; DIFFERENTIAL PHASE-CONTRAST; 2D MATERIALS; PTYCHOGRAPHY; STEM; RECONSTRUCTION; ATOMS;
D O I
10.1093/micmic/ozad068
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One approach to three-dimensional structure determination using the wealth of scattering data in four-dimensional (4D) scanning transmission electron microscopy (STEM) is the parallax method proposed by Ophus et al. (2019. Advanced phase reconstruction methods enabled by 4D scanning transmission electron microscopy, Microsc Microanal 25, 10-11), which determines the scattering matrix and uses it to synthesize a virtual depth-sectioning reconstruction of the sample structure. Drawing on an equivalence with a hypothetical confocal imaging mode, we derive contrast transfer and point spread functions for this parallax method applied to weakly scattering objects, showing them identical to earlier depth-sectioning STEM modes when only bright field signal is used, but that improved depth resolution is possible if dark field signal can be used. Through a simulation-based study of doped Si, we show that this depth resolution is preserved for thicker samples, explore the impact of shot noise on the parallax reconstructions, discuss challenges to making use of dark field signal, and identify cases where the interpretation of the parallax reconstruction breaks down.
引用
收藏
页码:1409 / 1421
页数:13
相关论文
共 50 条
  • [1] Manifold learning of four-dimensional scanning transmission electron microscopy
    Xin Li
    Ondrej E. Dyck
    Mark P. Oxley
    Andrew R. Lupini
    Leland McInnes
    John Healy
    Stephen Jesse
    Sergei V. Kalinin
    npj Computational Materials, 5
  • [2] Manifold learning of four-dimensional scanning transmission electron microscopy
    Li, Xin
    Dyck, Ondrej E.
    Oxley, Mark P.
    Lupini, Andrew R.
    McInnes, Leland
    Healy, John
    Jesse, Stephen
    Kalinin, Sergei, V
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [3] Multislice Electron Tomography Using Four-Dimensional Scanning Transmission Electron Microscopy
    Lee, Juhyeok
    Lee, Moosung
    Park, YongKeun
    Ophus, Colin
    Yang, Yongsoo
    PHYSICAL REVIEW APPLIED, 2023, 19 (05)
  • [4] Unsupervised deep denoising for four-dimensional scanning transmission electron microscopy
    Sadri, Alireza
    Petersen, Timothy C.
    Terzoudis-Lumsden, Emmanuel W. C.
    Esser, Bryan D.
    Etheridge, Joanne
    Findlay, Scott D.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [5] Four-Dimensional Scanning Transmission Electron Microscopy: From Material Microstructures to Physicochemical Properties
    Feng, Qilong
    Zhu, Chongzhi
    Sheng, Guan
    Sun, Tulai
    Li, Yonghe
    Zhu, Yihan
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (03)
  • [6] Author Correction: Manifold learning of four-dimensional scanning transmission electron microscopy
    Xin Li
    Ondrej E. Dyck
    Mark P. Oxley
    Andrew R. Lupini
    Leland McInnes
    John Healy
    Stephen Jesse
    Sergei V. Kalinin
    npj Computational Materials, 6
  • [7] Quantum and classical Fisher information in four-dimensional scanning transmission electron microscopy
    Dwyer, Christian
    Paganin, David M.
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [8] Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond
    Ophus, Colin
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (03) : 563 - 582
  • [9] A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy
    Van den Broek, W.
    Van Aert, S.
    Van Dyck, D.
    ULTRAMICROSCOPY, 2010, 110 (05) : 548 - 554
  • [10] Four-Dimensional Electron Microscopy
    Zewail, Ahmed H.
    SCIENCE, 2010, 328 (5975) : 187 - 193