Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms

被引:4
|
作者
Al-Mahdi, Adel M. [1 ,2 ]
Al-Gharabli, Mohammad M. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Preparatory Year Program, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
关键词
Timoshenko system; energy decay; variable exponents; nonlinear dampings; VISCOELASTIC WAVE-EQUATION; BLOW-UP; STABILITY; EXISTENCE; TIME; RATES; SHEAR;
D O I
10.3390/math11030538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the asymptotic behavior of the solution of a Timoshenko system with two nonlinear variable exponent damping terms. We prove that the system is stable under some specific conditions on the variable exponent and the equal wave speeds of propagation. We obtain exponential and polynomial decay results by using the multiplier method, and we prove that one variable damping is enough to have polynomial and exponential decay. We observe that the decay is not necessarily improved if the system has two variable damping terms. Our results built on, developed and generalized some earlier results in the literature.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Decay rate estimates for the quasi-linear Timoshenko system with nonlinear control and damping terms
    Wu, Yuhu
    Xue, Xiaoping
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [2] New decay results for Timoshenko system in the light of the second spectrum of frequency with infinite memory and nonlinear damping of variable exponent type
    Al-Mahdi, Adel M.
    ASYMPTOTIC ANALYSIS, 2024, 138 (01) : 101 - 133
  • [3] Energy decay to Timoshenko system with indefinite damping
    Fatori, Luci H.
    Saito, Tais O.
    Sepulveda, Mauricio
    Takahashi, Renan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 225 - 241
  • [4] ENERGY DECAY FOR A SUSPENSION BRIDGE PROBLEM WITH VARIABLE EXPONENT AND TIME DEPENDENT NONLINEAR DAMPING
    Al-gharabli, Mohammad m.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024,
  • [5] DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING
    Santos, M. L.
    Almeida Junior, D. S.
    Rodrigues, J. H.
    Falcao Nascimento, Flavio A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 1 - 26
  • [6] The growth or decay estimates for nonlinear wave equations with damping and source terms
    Zeng, Peng
    Li, Dandan
    Li, Yuanfei
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13989 - 14004
  • [7] General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping
    Guesmia, Aissa
    Messaoudi, Salim A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (16) : 2102 - 2122
  • [8] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    F. A. Falcão Nascimento
    I. Lasiecka
    J. H. Rodrigues
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 1189 - 1206
  • [9] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206
  • [10] Decay Estimates of Global Solutions to Nonlinear Wave Equation with Nonlinear Damping and Source Terms
    Chen, Zhen
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 6, 2009, : 134 - 137