Extensions of the Hilbert-multi-norm in Hilbert C*-modules

被引:0
|
作者
Abedi, Sajjad [1 ]
Moslehian, Mohammad Sal [2 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct CEAAS, Dept Pure Math, POB 1159, Mashhad 91775, Iran
关键词
Hilbert C*-module; Hilbert C*-multi-norm; Decomposition; Orthonormal basis;
D O I
10.1007/s11117-022-00960-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
( ) Dales and Polyakov introduced a multi-norm (parallel to.parallel to n((2,2)) : n is an element of N) based on a Banach space X and showed that it is equal with the Hilbert-multi-norm (parallel to.parallel to n(H) : n is an element of N) based on an infinite-dimensional Hilbert space H . We enrich the theory and present three extensions of the Hilbert-multi-norm for a Hilbert C*-module H . We denote these multi-norms by (parallel to.parallel to n(H) : n is an element of N), ((parallel to.parallel to n(*) : n is an element of N), and (parallel to.parallel to(P(u))(n) : n is an element of N). We show that?x?P(A) n >= ?x?Xn <= ?x?& lowast;nfor each x is an element of X n.In the casewhenXis a Hilbert K (H)-module, for each x is an element of Xn, we observe that ?middot?Pn(A) = ?middot?Xn. Furthermore, if His separable and X is infinite-dimensional, we prove that ?x?X n = ?x?& lowast;n. Among other things, we show that small and orthogonal decompositions with respect to these multi-norms are equivalent. Several examples are given to support the new findings.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Extensions of Hilbert C*-modules
    Bakic, D
    Guljas, B
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 537 - 558
  • [2] A SURVEY ON EXTENSIONS OF HILBERT C*-MODULES
    Kolarec, Biserka
    QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 29 : 209 - 221
  • [3] COHOMOLOGY AND EXTENSIONS OF HILBERT MODULES
    CARLSON, JF
    CLARK, DN
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (02) : 278 - 306
  • [4] Norm-parallelism in the geometry of Hilbert C*-modules
    Zamani, Ali
    Moslehian, Mohammad Sal
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01): : 266 - 281
  • [5] Norm equalities in pre-Hilbert C*-modules
    Popovici, Dan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) : 59 - 70
  • [6] From norm derivatives to orthogonalities in hilbert C∗-MODULES
    Wójcik, Pawe L.
    Zamani, Ali
    arXiv, 2021,
  • [7] From norm derivatives to orthogonalities in Hilbert C*-modules
    Wojcik, Pawel
    Zamani, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06): : 875 - 888
  • [8] Extensions of Hilbert C*-modules: Classification in simple cases
    V. M. Manuilov
    Zhu Jingming
    Russian Journal of Mathematical Physics, 2012, 19 : 197 - 202
  • [9] Morita equivalence and Cauchy extensions of Hilbert C*-modules
    Nourouzi, Kourosh
    Reza, Ali
    QUAESTIONES MATHEMATICAE, 2021, 44 (03) : 379 - 397
  • [10] Some weighted norm inequalities for Hilbert C*-modules
    Liu, Jing
    Wu, Deyu
    Chen, Alatancang
    ADVANCES IN OPERATOR THEORY, 2025, 10 (01)