Multi-modal deep convolutional dictionary learning for image denoising

被引:4
|
作者
Sun, Zhonggui [1 ,2 ]
Zhang, Mingzhu [1 ]
Sun, Huichao [1 ]
Li, Jie [2 ]
Liu, Tingting [3 ]
Gao, Xinbo [3 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Video & Image Proc Syst Lab, Xian 710071, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep convolutional dictionary learning; Multi-modal; Channel attention; Image denoising; SPARSE; REMOVAL;
D O I
10.1016/j.neucom.2023.126918
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Leveraging the capabilities of traditional dictionary learning (DicL) and drawing upon the success of deep neural networks (DNNs), the recently proposed framework of deep convolutional dictionary learning (DCDicL) has exhibited remarkable behaviours in image denoising. Note that, the application of the DCDicL method is confined to single modality scenarios, whereas the images in practice often originate from diverse modalities. In this paper, to broaden the application scope of the DCDicL method, we design a multi-modal version of it, dubbed MMDCDicL. Specifically, within the mathematical model of MMDCDicL, we adopt an analytical approach to tackle the sub-problem linked to the guidance modality, harnessing its inherent reliability. Meanwhile, like in DCDicL, we utilize a network-based learning approach for the noisy modality to extract trustworthy information from the data. Based on the solution, we establish an interpretable network structure for MMDCDicL. Additionally, wherein, we design a multi-kernel channel attention block (MKCAB) in the structure to efficiently integrate the information from diverse modalities. Experimental results suggest that MMDCDicL can reconstruct higher-quality outcomes both quantitatively and perceptually. Code is available at http://www.diplab.net/lunwen/mmdcdicl.htm.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multi-Modal Convolutional Dictionary Learning
    Gao, Fangyuan
    Deng, Xin
    Xu, Mai
    Xu, Jingyi
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1325 - 1339
  • [2] Deep Convolutional Dictionary Learning for Image Denoising
    Zheng, Hongyi
    Yong, Hongwei
    Zhang, Lei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 630 - 641
  • [3] Multi-modal Image Super-Resolution via Deep Convolutional Transform Learning
    Kumar, Kriti
    Majumdar, Angshul
    Kumar, A. Anil
    Chandra, M. Girish
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 671 - 675
  • [4] MULTI-MODAL IMAGE PROCESSING BASED ON COUPLED DICTIONARY LEARNING
    Song, Pingfan
    Rodrigues, Miguel R. D.
    2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2018, : 356 - 360
  • [5] FREQUENCY-RELEVANT RESIDUAL LEARNING FOR MULTI-MODAL IMAGE DENOISING
    Liu, Xiongwei
    Sheng, Zehua
    Shen, Hui-Liang
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 86 - 90
  • [6] Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion
    Deng, Xin
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3333 - 3348
  • [7] Multi-Modal Dictionary Learning for Image Separation With Application in Art Investigation
    Deligiannis, Nikos
    Mota, Joao F. C.
    Cornelis, Bruno
    Rodrigues, Miguel R. D.
    Daubechies, Ingrid
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 751 - 764
  • [8] Deep Convolutional Dictionary Learning Denoising Method Based on Distributed Image Patches
    Yin, Luqiao
    Gao, Wenqing
    Liu, Jingjing
    ELECTRONICS, 2024, 13 (07)
  • [9] Multi-modal haptic image recognition based on deep learning
    Han, Dong
    Nie, Hong
    Chen, Jinbao
    Chen, Meng
    Deng, Zhen
    Zhang, Jianwei
    SENSOR REVIEW, 2018, 38 (04) : 486 - 493
  • [10] An Ensemble Learning Approach for Multi-Modal Medical Image Fusion using Deep Convolutional Neural Networks
    Maseleno, Andino
    Kavitha, D.
    Ashok, Koudegai
    Ansari, Mohammed Saleh Al
    Satheesh, Nimmati
    Reddy, R. Vijaya Kumar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 758 - 769