Unsupervised machine learning detection of iceberg populations within sea ice from dual-polarisation SAR imagery

被引:3
|
作者
Evans, Ben [1 ]
Faul, Anita [1 ]
Fleming, Andrew [1 ]
Vaughan, David G. [1 ]
Hosking, J. Scott [2 ]
机构
[1] British Antarctic Survey, Madingley Rd, Cambridge CB3 0ET, Cambs, England
[2] British Lib, Alan Turing Inst, London NW1 2DB, England
基金
英国工程与自然科学研究理事会;
关键词
Iceberg; Machine learning; Automated; Bayesian; Classification; Radar; PROCESS MIXTURE MODEL; ANTARCTIC ICEBERGS; SOUTHERN-OCEAN; WEDDELL SEA; SEGMENTATION; TRACKING; IDENTIFICATION; DISTRIBUTIONS;
D O I
10.1016/j.rse.2023.113780
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate quantification of iceberg populations is essential to inform estimates of Southern Ocean freshwater and heat balances as well as shipping hazards. The automated operational monitoring of icebergs remains challenging, largely due to a lack of generality in existing approaches. Previous efforts to map icebergs have often exploited synthetic aperture radar (SAR) data but the majority are designed for open water situations, require significant operator input, and are susceptible to the substantial spatial and temporal variability in backscatter that characterises SAR time-series. We propose an adaptive unsupervised classification procedure based on Sentinel 1 SAR data and a recursive Dirichlet Process implementation of Bayesian Gaussian Mixture Model. The approach is robust to inter-scene variability and can identify icebergs even within complex environments containing mixtures of open water, sea ice and icebergs of various sizes. For the study area in the Amundsen Sea Embayment, close to the calving front of Thwaites Glacier, our classifier achieved a mean pixel-wise F1 score against manual iceberg delineations from the SAR scenes of 0.960 & PLUSMN; 0.018 with a corresponding object-level F1 score of 0.729 & PLUSMN; 0.086. The method provides an excellent basis for estimation of total near-shore iceberg populations and has inherent potential for scalability that other approaches lack.
引用
收藏
页数:15
相关论文
共 18 条
  • [1] Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study
    Barbat, Mauro M.
    Rackow, Thomas
    Wesche, Christine
    Hellmer, Hartmut H.
    Mata, Mauricio M.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 189 - 206
  • [2] First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR - Part 1: In situ observations
    Scharien, R. K.
    Landy, J.
    Barber, D. G.
    [J]. CRYOSPHERE, 2014, 8 (06): : 2147 - 2162
  • [3] Open water detection from Baltic sea ice SAR imagery
    Karvonen, J
    Similä, M
    Mäkynen, M
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4382 - 4385
  • [4] Uncertainty-Incorporated Ice and Open Water Detection on Dual-Polarized SAR Sea Ice Imagery
    Chen, Xinwei
    Scott, K. Andrea
    Xu, Linlin
    Jiang, Mingzhe
    Fang, Yuan
    Clausi, David A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] ADVANCING SEA ICE CLASSIFICATION CAPABILITIES IN SAR IMAGERY VIA POLARIMETRIC ANALYSIS AND MACHINE LEARNING
    Reinisch, Elena C.
    Castro, Lauren A.
    Whelsky, Amber
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 954 - 957
  • [6] An adaptive machine learning approach to improve automatic iceberg detection from SAR images
    Barbat, Mauro M.
    Wesche, Christine
    Werhli, Adriano V.
    Mata, Mauricio M.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 156 : 247 - 259
  • [7] First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR - Part 2: Scaling in situ to Radarsat-2
    Scharien, R. K.
    Hochheim, K.
    Landy, J.
    Barber, D. G.
    [J]. CRYOSPHERE, 2014, 8 (06): : 2163 - 2176
  • [8] Robust unsupervised small area change detection from SAR imagery using deep learning
    Zhang, Xinzheng
    Su, Hang
    Zhang, Ce
    Gu, Xiaowei
    Tan, Xiaoheng
    Atkinson, Peter M.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 173 : 79 - 94
  • [9] Open water detection from Baltic Sea ice Radarsat-1 SAR imagery
    Karvonen, J
    Similä, M
    Mäkynen, M
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) : 275 - 279
  • [10] Three Years of Near-Coastal Antarctic Iceberg Distribution From a Machine Learning Approach Applied to SAR Imagery
    Barbat, Mauro M.
    Rackow, Thomas
    Hellmer, Hartmut H.
    Wesche, Christine
    Mata, Mauricio M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (09) : 6658 - 6672