On reaction-diffusion models with memory and mean curvature-type diffusion

被引:3
|
作者
Folino, Raffaele [1 ]
Strani, Marta [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Matemat & Mecan, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar s-n,Ciudad Univ, Cd Mx 04510, Mexico
[2] Univ Ca Foscari Venezia Mestre, Dipartimento Sci Mol & Nanosistemi, Campus Sci,Via Torino 155, I-30170 Venice, Italy
关键词
Mean curvature operator; Slow motion; Energy estimates; BOUNDARY MOTION; SLOW MOTION; DYNAMICS; EQUATION;
D O I
10.1016/j.jmaa.2023.127027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a reaction-diffusion model with memory, where the linear diffusion operator is replaced by the mean curvature operator both in Euclidean and Lorentz-Minkowski spaces and the memory kernel is assumed to be of Jeffreys type. Regarding the reaction term, we consider a balanced bistable function f = -F', with F a generic double well potential with wells of equal depth. In particular, we assume that the potential F has two global minima at +/- 1 and that F(u) similar to |1 +/- u|2+theta, for some 0 > -1, when u approximate to +/- 1, and we consider the corresponding equation in a bounded interval with homogeneous Neumann boundary conditions. We prove that if 0 is an element of (-1,0), then there exist special steady states, named compactons, with a transition layer structure. In contrast, if 0 >= 0 the interface layers are not stationary and two different phenomena emerge: for 0 = 0 solutions exhibit a metastable behavior and maintain an unstable structure for an exponentially long time, while if 0 > 0 the exponentially slow motion is replaced by an algebraic one.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Metastable patterns for areaction-diffusion model with mean curvature-type diffusion
    Folino, Raffaele
    Plaza, Ramon G.
    Strani, Marta
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [2] Curvature dependences of wave propagation in reaction-diffusion models
    Buenzli, Pascal R. R.
    Simpson, Matthew J. J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2268):
  • [3] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M
    Soliani, G
    [J]. PHYSICA A, 1998, 260 (3-4): : 301 - 337
  • [4] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M.
    Soliani, G.
    [J]. Physica A: Statistical Mechanics and its Applications, 1998, 260 (3-4): : 301 - 337
  • [5] Singular limit of reaction-diffusion systems and modified motion by mean curvature
    Logak, E
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 951 - 973
  • [6] A reaction-diffusion equation with memory
    Grasselli, M
    Pata, V
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (04) : 1079 - 1088
  • [7] A reaction-diffusion memory device
    Kaminaga, Akiko
    Vanag, Vladinfir K.
    Epstein, Irving R.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (19) : 3087 - 3089
  • [8] Reaction-diffusion waves coupled with membrane curvature
    Tamemoto, Naoki
    Noguchi, Hiroshi
    [J]. SOFT MATTER, 2021, 17 (27) : 6589 - 6596
  • [9] Associative memory with the reaction-diffusion equation
    Yuasa, H
    Ito, S
    Ito, K
    Ito, M
    [J]. BIOLOGICAL CYBERNETICS, 1997, 76 (02) : 129 - 137
  • [10] A REACTION-DIFFUSION APPROXIMATION TO AN AREA PRESERVING MEAN CURVATURE FLOW COUPLED WITH A BULK EQUATION
    Henry, Marie
    Hilhorst, Danielle
    Mimura, Masayasu
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (01): : 125 - 154