Skyrmion transport and annihilation in funnel geometries

被引:4
|
作者
Rocha, F. S. [1 ]
Souza, J. C. Bellizotti [1 ]
Vizarim, N. P. [2 ]
Reichhardt, C. J. O. [3 ,4 ]
Reichhardt, C. [3 ,4 ]
Venegas, P. A. [2 ]
机构
[1] Univ Estadual Paulista UNESP, Fac Ciencias, POSMAT Programa Posgrad Ciencia & Tecnol Mat, CP 473, BR-17033360 Bauru, SP, Brazil
[2] Unesp Univ Estadual Paulista, Fac Ciencias, Dept Fis, CP 473, BR-17033360 Bauru, SP, Brazil
[3] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
skyrmion; transport; information carrier; Hall angle; annihilation; MAGNETIC SKYRMIONS; MOTION; DYNAMICS;
D O I
10.1088/1361-648X/ad1218
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using atomistic simulations, we have investigated the transport and annihilation of skyrmions interacting with a funnel array under a current applied perpendicular to the funnel axis. We find that transport without annihilation is possible at low currents, when the motion is dominated by skyrmion-skyrmion interactions and skyrmions push each other through the funnel opening. Skyrmion annihilation occurs for higher currents when skyrmions in the upper half of the sample exert pressure on skyrmions in the bottom half of the sample due to the external current. Upon interacting with the funnel wall, the skyrmions undergo a size reduction that makes it easier for them to pass through the funnel opening. We find five phases as a function of the applied current and the size of the funnel opening: (i) pinned, (ii) transport without annihilation, (iii) transport with annihilation, (iv) complete annihilation, and (v) a reentrant pinning phase that only occurs for very narrow openings. Our findings provide insight into how to control skyrmion transport using funnel arrays by delineating regimes in which transport of skyrmions is possible as well as the conditions under which annihilation occurs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Skyrmion ratchet in funnel geometries
    Bellizotti Souza, J. C.
    Vizarim, N. P.
    Reichhardt, C. J. O.
    Reichhardt, C.
    Venegas, P. A.
    PHYSICAL REVIEW B, 2021, 104 (05)
  • [2] PION CORRELATION FROM SKYRMION-ANTI-SKYRMION ANNIHILATION
    LU, Y
    AMADO, RD
    PHYSICAL REVIEW C, 1995, 52 (05): : 2369 - 2376
  • [3] Transformation of a skyrmionium to a skyrmion through the thermal annihilation of the inner skyrmion
    Jiang, Anjie
    Zhou, Yan
    Zhang, Xichao
    Mochizuki, Masahito
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [4] Logic Device Based on Skyrmion Annihilation
    Song, Moojune
    Park, Min Gyu
    Ko, San
    Jang, Sung Kyu
    Je, Minkyu
    Kim, Kab-Jin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (04) : 1939 - 1943
  • [5] Skyrmion creation and annihilation by spin waves
    Liu, Yizhou
    Yin, Gen
    Zang, Jiadong
    Shi, Jing
    Lake, Roger K.
    APPLIED PHYSICS LETTERS, 2015, 107 (15)
  • [6] Skyrmion-anti-Skyrmion annihilation with ω mesons -: art. no. 054020
    Halász, MA
    Amado, RD
    PHYSICAL REVIEW D, 2001, 63 (05)
  • [7] Magnetic skyrmion annihilation by quantum mechanical tunneling
    Vlasov, Sergei M.
    Bessarab, Pavel F.
    Lobanov, Igor S.
    Potkina, Mariia N.
    Uzdin, Valery M.
    Jonsson, Hannes
    NEW JOURNAL OF PHYSICS, 2020, 22 (08)
  • [8] Commensurability, jamming, and dynamics for vortices in funnel geometries
    Reichhardt, C. J. Olson
    Reichhardt, C.
    PHYSICAL REVIEW B, 2010, 81 (22)
  • [9] Skyrmion Creation and Annihilation by Electric Current Vorticity
    Fujimoto, Junji
    Funaki, Hiroshi
    Koshibae, Wataru
    Matsuo, Mamoru
    Maekawa, Sadamichi
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (08)
  • [10] Effects of Temperature and Structural Geometries on a Skyrmion Logic Gate
    Tang, Chunli
    Alahmed, Laith
    Xu, Jihao
    Shen, Maokang
    Jones, Nicholas Alex
    Sadi, Mehdi
    Guin, Ujjwal
    Zhao, Wenfeng
    Li, Peng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (04) : 1706 - 1712