Removing the effects of the site in brain imaging machine-learning - Measurement and extendable benchmark

被引:3
|
作者
Solanes, Aleix [1 ,2 ]
Gosling, Corentin J. [3 ,4 ,13 ]
Fortea, Lydia [1 ,5 ,6 ]
Ortuno, Maria [1 ]
Lopez-Soley, Elisabet [1 ,6 ,7 ]
Llufriu, Sara [1 ,6 ,7 ]
Madero, Santiago [1 ,5 ,6 ,8 ]
Martinez-Heras, Eloy [1 ,6 ,7 ]
Pomarol-Clotet, Edith [5 ,9 ,10 ]
Solana, Elisabeth [1 ,6 ,7 ]
Vieta, Eduard [1 ,5 ,6 ,8 ]
Radua, Joaquim [1 ,5 ,6 ,11 ,12 ]
机构
[1] Inst Invest Biomed August Pi i Sunyer IDIBAPS, Rossello 149, Barcelona 08036, Spain
[2] Autonomous Univ Barcelona, Dept Psychiat & Forens Med, Barcelona, Spain
[3] Paris Nanterre Univ, DysCo Lab, Nanterre, France
[4] Univ Paris, Lab Psychopathol & Proc Sante, Paris, France
[5] Inst Salud Carlos III, Biomed Network Res Ctr Mental Hlth CIBERSAM, Madrid, Spain
[6] Univ Barcelona, Barcelona, Spain
[7] Hosp Clin Barcelona, Ctr Neuroimmunol, Lab Adv Imaging Neuroimmunol Dis, Barcelona, Spain
[8] Hosp Clin Barcelona, Barcelona Bipolar Disorders & Depress Unit, Inst Neurosci, Barcelona, Spain
[9] FIDMAG Germanes Hosp Res Fdn, Barcelona, Spain
[10] Benito Menni CASM, Barcelona, Spain
[11] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Psychosis Studies, London, England
[12] Karolinska Inst, Ctr Psychiat Res & Educ, Dept Clin Neurosci, Stockholm, Sweden
[13] Univ Southampton, Fac Environm & Life Sci, Ctr Innovat Mental Hlth CIMH, Sch Psychol, Southampton, Hants, England
关键词
Benchmark; Effects of the site; Machine-learning; Magnetic resonance imaging;
D O I
10.1016/j.neuroimage.2022.119800
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multisite machine-learning neuroimaging studies, such as those conducted by the ENIGMA Consortium, need to remove the differences between sites to avoid effects of the site (EoS) that may prevent or fraudulently help the creation of prediction models, leading to impoverished or inflated prediction accuracy. Unfortunately, we have shown earlier that current Methods Aiming to Remove the EoS (MAREoS, e.g., ComBat) cannot remove complex EoS (e.g., including interactions between regions). And complex EoS may bias the accuracy. To overcome this hurdle, groups worldwide are developing novel MAREoS. However, we cannot assess their effectiveness because EoS may either inflate or shrink the accuracy, and MAREoS may both remove the EoS and degrade the data. In this work, we propose a strategy to measure the effectiveness of a MAREoS in removing different types of EoS. FOR MAREOS DEVELOPERS, we provide two multisite MRI datasets with only simple true effects (i.e., detectable by most machine-learning algorithms) and two with only simple EoS (i.e., removable by most MAREoS). First, they should use these datasets to fit machine-learning algorithms after applying the MAREoS. Second, they should use the formulas we provide to calculate the relative accuracy change associated with the MAREoS in each dataset and derive an EoS-removal effectiveness statistic. We also offer similar datasets and formulas for complex true effects and EoS that include first-order interactions. FOR MACHINE-LEARNING RESEARCHERS, we provide an extendable benchmark website to show: a) the types of EoS they should remove for each given machine-learning algorithm and b) the effectiveness of each MAREoS for removing each type of EoS. Relevantly, a MAREoS only able to remove the simple EoS may suffice for simple machine-learning algorithms, whereas more complex algorithms need a MAREoS that can remove more complex EoS. For instance, ComBat removes all simple EoS as needed for predictions based on simple lasso algorithms, but it leaves residual complex EoS that may bias the predictions based on standard support vector machine algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A machine-learning benchmark for facies classification
    Alaudah, Yazeed
    Michalowicz, Patrycja
    Alfarraj, Motaz
    Alregib, Ghassan
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE175 - SE187
  • [2] Electrical imaging of soil water availability to grapevine: a benchmark experiment of several machine-learning techniques
    Brillante, L.
    Bois, B.
    Mathieu, O.
    Leveque, J.
    [J]. PRECISION AGRICULTURE, 2016, 17 (06) : 637 - 658
  • [3] Electrical imaging of soil water availability to grapevine: a benchmark experiment of several machine-learning techniques
    L. Brillante
    B. Bois
    O. Mathieu
    J. Lévêque
    [J]. Precision Agriculture, 2016, 17 : 637 - 658
  • [4] Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection
    Leon, Raquel
    Fabelo, Himar
    Ortega, Samuel
    Cruz-Guerrero, Ines A.
    Campos-Delgado, Daniel Ulises
    Szolna, Adam
    Pineiro, Juan F.
    Espino, Carlos
    O'Shanahan, Aruma J.
    Hernandez, Maria
    Carrera, David
    Bisshopp, Sara
    Sosa, Coralia
    Balea-Fernandez, Francisco J.
    Morera, Jesus
    Clavo, Bernardino
    Callico, Gustavo M.
    [J]. NPJ PRECISION ONCOLOGY, 2023, 7 (01)
  • [5] Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection
    Raquel Leon
    Himar Fabelo
    Samuel Ortega
    Ines A. Cruz-Guerrero
    Daniel Ulises Campos-Delgado
    Adam Szolna
    Juan F. Piñeiro
    Carlos Espino
    Aruma J. O’Shanahan
    Maria Hernandez
    David Carrera
    Sara Bisshopp
    Coralia Sosa
    Francisco J. Balea-Fernandez
    Jesus Morera
    Bernardino Clavo
    Gustavo M. Callico
    [J]. npj Precision Oncology, 7
  • [6] Evaluating Effects of Methylphenidate on Brain Activity in Cocaine Addiction: A Machine-Learning Approach
    Rish, Irina
    Bashivan, Pouya
    Cecchi, Guillermo A.
    Goldstei, Rita Z.
    [J]. MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2016, 9788
  • [7] Biased accuracy in multisite machine-learning studies due to incomplete removal of the effects of the site
    Solanes, Aleix
    Palau, Pol
    Fortea, Lydia
    Salvador, Raymond
    Gonzalez-Navarro, Laura
    Daniel Llach, Cristian
    Valenti, Marc
    Vieta, Eduard
    Radua, Joaquim
    [J]. PSYCHIATRY RESEARCH-NEUROIMAGING, 2021, 314
  • [8] Brain dynamics uncovered using a machine-learning algorithm
    Mathis, Mackenzie Weygandt
    [J]. NATURE, 2023,
  • [9] Neural effects of dopaminergic compounds revealed by multi-site electrophysiology and interpretable machine-learning
    Kapanaiah, Sampath K. T.
    Rosenbrock, Holger
    Hengerer, Bastian
    Kaetzel, Dennis
    [J]. FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [10] Borehole Resistivity Measurement Modeling Using Machine-Learning Techniques
    Xu, Yankai
    Sun, Keli
    Xie, Hui
    Zhong, Xiaoyan
    Mirto, Ettore
    Feng, Yao
    Hong, Xiaobo
    [J]. PETROPHYSICS, 2018, 59 (06): : 778 - 785