In silico selection of aptamers for bacterial toxins detection

被引:3
|
作者
Escamilla-Gutierrez, Alejandro [1 ,2 ]
Guadalupe Cordova-Espinoza, Maria [1 ,3 ]
Sanchez-Moncivais, Anahi [3 ]
Tecuatzi-Cadena, Brenda [3 ]
Gabriela Regalado-Garcia, Ana [3 ]
Medina-Quero, Karen [3 ]
机构
[1] Inst Politecn Nacl, Dept Microbiol, Lab Bacteriol Med, Escuela Nacl Ciencias Biol, Ciudad De Mexico, Mexico
[2] Hosp Gen, Inst Mexicano Seguro Social IMSS, Ciudad De Mexico, Mexico
[3] Escuela Mil Grad Sanidad, Secretaria Def Nacl, Lab Inmunol, Ciudad De Mexico, Mexico
来源
关键词
toxins; aptamers; in silico; molecular docking; RNA; RNA; ALIGNMENT; DOCKING;
D O I
10.1080/07391102.2022.2159529
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The most commonly used toxins in biological warfare are staphylococcal enterotoxin B (3SEB), cholera toxin (1XTC), and botulinum toxin (3BTA). Uncovering novel strategies for identifying these toxins is paramount; therefore, aptamers are used for this purpose. Aptamers are single-stranded DNA or RNA oligonucleotides selected via Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with high binding affinity and specificity against target molecules. However, SELEX in vitro is tedious; hence, adopting alternative in silico molecular docking approaches is necessary. We aimed to conduct molecular docking with accessible tools and obtain RNA aptamers. First, 4,820,095 sequences obtained from an initial library of 9.5 x 10(9) Python script sequences were used. The GraphClust program was used to create representative groups or clusters, and the DoGSiteScorer () was used to conduct binding site detection of the proteins: 5DO4 (thrombin), 3SEB, 1XTC, and 3BTA. rDock, HDock, and PatchDock were adopted, combining different docking program results (consensus scoring), to improve receptor-ligand prediction. An analysis of the poses and root mean square deviation (RMSD) was performed, and 468 structurally different aptamers were obtained. The DoGSiteScorer program predicted the binding site of each protein to direct the interaction with the aptamer. Candidate aptamers for 3SEB, 1XTC, and 3BTA were selected according to the pose value considering the closeness of the interaction with a lower mean of 45.923 & ANGS;, 45.854 & ANGS;, and 72.490 & ANGS;, respectively.Communicated by Ramaswamy H. Sarma
引用
收藏
页码:10909 / 10918
页数:10
相关论文
共 50 条
  • [1] In silico selection of RNA aptamers
    Chushak, Yaroslav
    Stone, Morley O.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (12)
  • [2] In silico selection of RNA aptamers
    Chushak, Yaroslav
    Stone, Morley O.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237 : 431 - 431
  • [3] Selection of protein-binding DNA aptamers for bacterial detection in salmon
    Clow, Ellie
    Harris, Katie
    Cavinato, Anna
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] Marine Toxins Detection by Biosensors Based on Aptamers
    Ye, Wei
    Liu, Taomei
    Zhang, Weimin
    Zhu, Muzi
    Liu, Zhaoming
    Kong, Yali
    Liu, Shan
    [J]. TOXINS, 2020, 12 (01)
  • [5] Selection of aptamers against live bacterial cells
    Hamula, Camille L. A.
    Zhang, Hongquan
    Guan, Le Luo
    Li, Xing-Fang
    Le, X. Chris
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (20) : 7812 - 7819
  • [6] In silico selection of aptamers against SARS-CoV-2
    Akmal Shukri, Amir Muhaimin
    Wang, Seok Mui
    Feng, Chaoli
    Chia, Suet Lin
    Mohd Nawi, Siti Farah Alwani
    Citartan, Marimuthu
    [J]. ANALYST, 2024, 149 (19) : 4770 - 4788
  • [7] Detection of bacterial toxins with monosaccharide arrays
    Ngundi, MM
    Taitt, CR
    McMurry, SA
    Kahne, D
    Ligler, FS
    [J]. BIOSENSORS & BIOELECTRONICS, 2006, 21 (07): : 1195 - 1201
  • [8] Selection of Peptidoglycan-Specific Aptamers for Bacterial Cells Identification
    Ferreira, Ieda Mendes
    de Souza Lacerda, Camila Maria
    de Faria, Ligia Santana
    Correa, Cristiane Rodrigues
    Ribeiro de Andrade, Antero Silva
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 174 (07) : 2548 - 2556
  • [9] Selection of Peptidoglycan-Specific Aptamers for Bacterial Cells Identification
    Iêda Mendes Ferreira
    Camila Maria de Souza Lacerda
    Lígia Santana de Faria
    Cristiane Rodrigues Corrêa
    Antero Silva Ribeiro de Andrade
    [J]. Applied Biochemistry and Biotechnology, 2014, 174 : 2548 - 2556
  • [10] In Silico Selection and Validation of High-Affinity ssDNA Aptamers Targeting Paromomycin
    Li, Jiaqing
    Liu, Yangyang
    Liu, Dongdong
    Xu, Tong
    Zhang, Chen
    Li, Jianjun
    Wang, Zhuo A.
    Du, Yuguang
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (27) : 10405 - 10413