Role of carboxylates in the phase determination of metal sulfide nanoparticles

被引:4
|
作者
Shults, Andrey A. A. [1 ,2 ]
Lu, Guanyu [2 ,3 ]
Caldwell, Joshua D. D. [1 ,2 ,3 ,4 ]
Macdonald, Janet E. E. [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA
[2] Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[4] Sensorium Technol Labs, Nashville, TN 37205 USA
基金
美国国家科学基金会;
关键词
THERMAL-DECOMPOSITION; NICKEL; THIOUREA; NANOCRYSTALS; SURFACE; GROWTH; SIZE;
D O I
10.1039/d3nh00227f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Techniques are well established for the control of nanoparticle shape and size in colloidal synthesis, but very little is understood about precursor interactions and their effects on the resultant crystalline phase. Here we show that oleate, a surface stabilizing ligand that is ubiquitous in nanocrystal synthesis, plays a large role in the mechanism of phase selection of various metal sulfide nanoparticles when thiourea is used as the sulfur source. Gas and solid-phase FTIR, C-13, and H-1 NMR studies revealed that oleate and thiourea interact to produce oleamide which promotes the isomeric shift of thiourea into ammonium thiocyanate, a less reactive sulfur reagent. Because of these sulfur sequestering reactions, sulfur deficient and metastable nanoparticles are produced, a trend seen across four different metals: copper, iron, nickel, and cobalt. At low carboxylate concentrations, powder XRD indicated that the following phases formed: covellite (CuS); vaesite (NiS2); smythite (FeS1.3), greigite (FeS1.3), marcasite (FeS2) and pyrite (FeS2); and cattierite (CoS2). At high sodium oleate concentration, these phases formed: digenite (CuS0.55), nickel sulfide (NiS), pyrrhotite (FeS1.1), and jaipurite (CoS).
引用
收藏
页码:1386 / 1394
页数:9
相关论文
共 50 条
  • [1] Two-phase synthesis of metal sulfide nanoparticles
    Bian, Lina
    Maier, Joseph
    Marra, Sebastian
    Ring, Kylie
    Goulet, Paul J. G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [2] Reactivity of oxide and sulfide supported metal nanoparticles: Role of the interface
    Hong, Sampyo
    Le, Duy
    Rawal, Takat
    Rahman, Talat S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [3] Synthesis of metal sulfide semiconductor nanoparticles
    Shu, L
    Yu, SH
    Qian, YT
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 1999, 15 (01) : 1 - 7
  • [4] Metal sulfide nanoparticles in the marine environment
    Luther, George W.
    Gartman, Amy
    Yuecel, Mustafa
    Chan, Clara S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [5] Metal Sulfide Nanoparticles: Precursor Chemistry
    Balakrishnan, Adithya
    Groeneveld, Jan Derk
    Pokhrel, Suman
    Maedler, Lutz
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (21) : 6390 - 6406
  • [6] Metal sulfide nanoparticles and clusters in the environment
    Luther, George W., III
    Mullaugh, Katherine M.
    Yucel, Mustafa
    Rickard, David
    Spraggins, Jeffrey M., II
    Ridge, Douglas P.
    Hsu-Kim, Heileen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [7] Metal sulfide nanoparticles for photovoltaics and photocatalysis
    Knutson, Ryan
    Reyna, Maritza D.
    Penn, R. Lee
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [8] In air liquid-solid phase synthesis of metal sulfide nanoparticles from metal acetates and thiourea
    Xu, Zhi You
    Zhang, Yong Cai
    MATERIALS CHEMISTRY AND PHYSICS, 2008, 112 (02) : 333 - 336
  • [9] Kinetics of formation of nanoparticles from first group metal carboxylates
    M. E. Solov’ev
    T. F. Irzhak
    V. I. Irzhak
    Russian Journal of Physical Chemistry A, 2015, 89 : 1642 - 1647
  • [10] Kinetics of Formation of Nanoparticles from First Group Metal Carboxylates
    Solov'ev, M. E.
    Irzhak, T. F.
    Irzhak, V. I.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 89 (09) : 1642 - 1647