Optical engineering of PbS colloidal quantum dot solar cells via Fabry-Perot resonance and distributed Bragg reflectors

被引:4
|
作者
Bae, Sumin [1 ]
Duff, Matthew [1 ]
Hong, Jun Young [1 ]
Lee, Jung-Kun [1 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
Colloidal quantum dots; Solar cells; Light trapping; Wavelength selectivity; Fabry-Perot resonance; Distributed Bragg reflectors; HIGHLY EFFICIENT; TRANSPARENT; TRANSPORT; ELECTRODE;
D O I
10.1186/s40580-023-00379-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry-Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO2-TiO2 multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optical engineering of PbS colloidal quantum dot solar cells via Fabry–Perot resonance and distributed Bragg reflectors
    Sumin Bae
    Matthew Duff
    Jun Young Hong
    Jung-Kun Lee
    Nano Convergence, 10
  • [2] Bragg reflectors for large optical aperture MEMS Fabry-Perot interferometers
    Rissanen, Anna
    Mannila, Rami
    Antila, Jarkko
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS IV, 2012, 8373
  • [3] High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors
    Krupka, J
    Cwikla, A
    Mrozowski, M
    Clarke, RN
    Tobar, ME
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (09) : 1443 - 1451
  • [4] Random porous silicon multilayers: Application to distributed Bragg reflectors and interferential Fabry-Perot filters
    Pavesi, L
    Dubos, P
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (05) : 570 - 575
  • [5] Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Perot filters
    Universita di Trento, Povo, Italy
    Semicond Sci Technol, 5 (570-575):
  • [6] Optical Bistability in a Silicon Waveguide Distributed Bragg Reflector Fabry-Perot Resonator
    Grieco, Andrew
    Slutsky, Boris
    Tan, Dawn T. H.
    Zamek, Steve
    Nezhad, Maziar P.
    Fainman, Yeshaiahu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (14) : 2352 - 2355
  • [7] PbS Colloidal Quantum Dot Inks for Infrared Solar Cells
    Zheng, Siyu
    Chen, Jingxuan
    Johansson, Erik M. J.
    Zhang, Xiaoliang
    ISCIENCE, 2020, 23 (11)
  • [8] Effects of top layer inhomogeneities on the performance of Fabry-Perot cavities and open resonators based on distributed Bragg reflectors
    Papatryfonos, K.
    de Oliveira, E. R. Cardozo
    Lanzillotti-Kimura, N. D.
    OPTICAL SENSING AND DETECTION VIII, 2024, 12999
  • [9] Effect of interface grading on the optical performance of distributed Bragg reflector multilayers in Fabry-Perot optical filters
    Admassu, Deginet
    Durowade, Tejumade
    Sellers, Ryan
    Sivananthan, Sivalingam
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (07): : 2785 - 2790
  • [10] Improving PbS colloidal quantum dot solar cell performance via solution-phase engineering
    Gudi, Dhanvini
    Chiu, Arlene
    Kachman, Dana
    Rong, Eric
    Kamal, Serene
    Lan, Yucheng
    Thon, Susanna M.
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,